Gravitational-wave Detection and Parameter Estimation for Accreting Black-hole Binaries and Their Electromagnetic Counterpart
We study the impact of gas accretion on the orbital evolution of black-hole binaries initially at large separation in the band of the planned Laser Interferometer Space Antenna (LISA). We focus on two sources: (i)~stellar-origin black-hole binaries~(SOBHBs) that can migrate from the LISA band to the band of ground-based gravitational-wave observatories within weeks/months; and (ii) intermediate-mass black-hole binaries~(IMBHBs) in the LISA band only. Because of the large number of observable gravitational-wave cycles, the phase evolution of these systems needs to be modeled to great accuracy to avoid biasing the estimation of the source parameters. Accretion affects the gravitational-wave p…
Accretion in strong field gravity with eXTP
In this paper we describe the potential of the enhanced X-ray Timing and Polarimetry (eXTP) mission for studies related to accretion flows in the strong field gravity regime around both stellar-mass and supermassive black-holes. eXTP has the unique capability of using advanced 'spectral-timing-polarimetry' techniques to analyze the rapid variations with three orthogonal diagnostics of the flow and its geometry, yielding unprecedented insight into the inner accreting regions, the effects of strong field gravity on the material within them and the powerful outflows which are driven by the accretion process.
New horizons for fundamental physics with LISA
K. G. Arun et al.
Constraints on millicharged dark matter and axionlike particles from timing of radio waves
We derive novel constraints on millicharged dark matter and ultralight axion-like particles using pulsar timing and fast radio burst observations. Millicharged dark matter affects the dispersion measure of the time of arrival of radio pulses in a way analogous to free electrons. Light pseudo-scalar dark matter, on the other hand, causes the polarization angle of radio signals to oscillate. We show that current and future data can set strong constraints in both cases. For dark matter particles of charge $\epsilon e$, these constraints are ${\epsilon}/{m_{\rm milli}} \lesssim 10^{-8}{\rm eV}^{-1}$, for masses $m_{\rm milli}\gtrsim 10^{-6}\,$eV. For axion-like particles, the analysis of signal…