0000000000181609
AUTHOR
Arnulf Latz
Fluids of hard ellipsoids: Phase diagram including a nematic instability from Percus-Yevick theory
An important aspect of molecular fluids is the relation between orientation and translation parts of the two-particle correlations. Especially the detailed knowledge of the influence of orientation correlations is needed to explain and calculate in detail the occurrence of a nematic phase. The simplest model system which shows both orientation and translation correlations is a system of hard ellipsoids. We investigate an isotropic fluid formed of hard ellipsoids with Percus-Yevick theory. Solving the Percus-Yevick equations self-consistently in the high density regime gives a clear criterion for a nematic instability. We calculate in detail the equilibrium phase diagram for a fluid of hard …
Test of molecular mode coupling theory for general rigid molecules
We report recent progress on the test of mode coupling theory for molecular liquids (MMCT) for molecules of arbitrary shape. The MMCT equations in the long time limit are solved for supercooled water including all molecular degrees of freedom. In contrast to our earlier treatment of water as a linear molecule, we find that the glass-transition temperature ${T}_{c}$ is overestimated by the theory as was found in the case of simple liquids. The nonergodicity parameters are calculated from the ``full'' set of MMCT equations truncated at ${l}_{\mathrm{co}}=2.$ These results are compared (i) with the nonergodicity parameters from MMCT with ${l}_{\mathrm{co}}=2$ in the ``dipole'' approximation ${…
On the theory of light scattering in molecular liquids
The theory of light scattering for a system of linear molecules with anisotropic polarizabilities is considered. As a starting point for our theory, we express the result of a scattering experiment in VV and VH symmetry as dynamic correlation functions of tensorial densities $\rho_{lm}(q)$ with $l=0$ and $l=2$. $l$, $m$ denote indices of spherical harmonics. To account for all observed hydrodynamic singularities, a generalization of the theory of Schilling and Scheidsteger \cite{schilling97} for these correlation functions is presented, which is capable to describe the light scattering experiments from the liquid regime to the glassy state. As a microscopic theory it fulfills all sum rules …
Molecular mode-coupling theory applied to a liquid of diatomic molecules
We study the molecular mode coupling theory for a liquid of diatomic molecules. The equations for the critical tensorial nonergodicity parameters ${\bf F}_{ll'}^m(q)$ and the critical amplitudes of the $\beta$ - relaxation ${\bf H}_{ll'}^m(q)$ are solved up to a cut off $l_{co}$ = 2 without any further approximations. Here $l,m$ are indices of spherical harmonics. Contrary to previous studies, where additional approximations were applied, we find in agreement with simulations, that all molecular degrees of freedom vitrify at a single temperature $T_c$. The theoretical results for the non ergodicity parameters and the critical amplitudes are compared with those from simulations. The qualitat…
Molecular mode-coupling theory for supercooled liquids: application to water.
We present mode-coupling equations for the description of the slow dynamics observed in supercooled molecular liquids close to the glass transition. The mode-coupling theory (MCT) originally formulated to study the slow relaxation in simple atomic liquids, and then extended to the analysis of liquids composed by linear molecules, is here generalized to systems of arbitrarily shaped, rigid molecules. We compare the predictions of the theory for the $q$-vector dependence of the molecular nonergodicity parameters, calculated by solving numerically the molecular MCT equations in two different approximation schemes, with ``exact'' results calculated from a molecular dynamics simulation of superc…
Dynamical precursor of nematic order in a dense fluid of hard ellipsoids of revolution
We investigate hard ellipsoids of revolution in a parameter regime where no long range nematic order is present but already finite size domains are formed which show orientational order. Domain formation leads to a substantial slowing down of a collective rotational mode which separates well from the usual microscopic frequency regime. A dynamic coupling of this particular mode into all other modes provides a general mechanism which explains an excess peak in spectra of molecular fluids. Using molecular dynamics simulation on up to 4096 particles and on solving the molecular mode coupling equation we investigate dynamic properties of the peak and prove its orientational origin.
Ideal glass transitions for hard ellipsoids
For hard ellipsoids of revolution we calculate the phase diagram for the idealized glass transition. Our equations cover the glass physics in the full phase space, for all packing fractions and all aspect ratios X$_0$. With increasing aspect ratio we find the idealized glass transition to become primarily be driven by orientational degrees of freedom. For needle or plate like systems the transition is strongly influenced by a precursor of a nematic instability. We obtain three types of glass transition lines. The first one ($\phi_c^{(B)}$) corresponds to the conventional glass transition for spherical particles which is driven by the cage effect. At the second one ($\phi_c^{(B')}$) which oc…
Microscopic Dynamics of Hard Ellipsoids in their Liquid and Glassy Phase
To investigate the influence of orientational degrees of freedom onto the dynamics of molecular systems in its supercooled and glassy regime we have solved numerically the mode-coupling equations for hard ellipsoids of revolution. For a wide range of volume fractions $\phi$ and aspect ratios $x_{0}$ we find an orientational peak in the center of mass spectra $\chi_{000}^{''}(q,\omega)$ and $\phi_{000}^{''} (q,\omega)$ about one decade below a high frequency peak. This orientational peak is the counterpart of a peak appearing in the quadrupolar spectra $\chi_{22m}^{''}(q,\omega)$ and $\phi_{22m}^{''}(q,\omega)$. The latter peak is almost insensitive on $\phi$ for $x_{0}$ close to one, i.e. f…
The β-relaxation amplitudes for a dipolar hard sphere glass
Abstract The β-relaxation amplitudes h m l , l ′ ( q ) for a dipolar hard sphere model are calculated in the diagonalization approximation up to l =1. The relevance to experimental difficulties to detect the characteristic β-relaxation minimum in dielectric loss measurements is discussed. Additionally, the microscopic nature of the β-relaxation of the rotational components is investigated by discussing the amplitudes in real space at different temperatures and densities.
Light-scattering spectra of supercooled molecular liquids
The light scattering spectra of molecular liquids are derived within a generalized hydrodynamics. The wave vector and scattering angle dependences are given in the most general case and the change of the spectral features from liquid to solidlike is discussed without phenomenological model assumptions for (general) dielectric systems without long-ranged order. Exact microscopic expressions are derived for the frequency-dependent transport kernels, generalized thermodynamic derivatives and the background spectra.
Chaotic Properties of Dilute Two and Three Dimensional Random Lorentz Gases II: Open Systems
We calculate the spectrum of Lyapunov exponents for a point particle moving in a random array of fixed hard disk or hard sphere scatterers, i.e. the disordered Lorentz gas, in a generic nonequilibrium situation. In a large system which is finite in at least some directions, and with absorbing boundary conditions, the moving particle escapes the system with probability one. However, there is a set of zero Lebesgue measure of initial phase points for the moving particle, such that escape never occurs. Typically, this set of points forms a fractal repeller, and the Lyapunov spectrum is calculated here for trajectories on this repeller. For this calculation, we need the solution of the recently…
Microscopic dynamics of molecular liquids and glasses: Role of orientations and translation-rotation coupling
We investigate the dynamics of a fluid of dipolar hard spheres in its liquid and glassy phase, with emphasis on the microscopic time or frequency regime. This system shows rather different glass transition scenarios related to its rich equilibrium behavior which ranges from a simple hard sphere fluid to a long range ferroelectric orientational order. In the liquid phase close to the ideal glass transition line and in the glassy regime a medium range orientational order occurs leading to a softening of an orientational mode. To investigate the role of this mode we use the molecular mode-coupling equations to calculate the spectra $\phi_{lm}^{\prime \prime}(q,\omega)$ and $\chi _{lm}''(q,\ome…
Molecular correlations in a supercooled liquid
We present static and dynamic properties of molecular correlation functions S_{lmn,l'm'n'}(q,t) in a simulated supercooled liquid of water molecules, as a preliminary effort in the direction of solving the molecular mode coupling theory (MMCT) equations for supercooled molecular liquids. The temperature and time dependence of various molecular correlation functions, calculated from 250 ns long molecular dynamics simulations, show the characteristic patterns predicted by MMCT and shed light on the driving mechanism responsible for the slowing down of the molecular dynamics. We also discuss the symmetry properties of the molecular correlation functions which can be predicted on the basis of t…