0000000000182204
AUTHOR
Francisco J. Muñoz-lara
Sequestering aromatic molecules with a spin-crossover Fe(II) microporous coordination polymer.
All in a spin: A series of three-dimensional porous coordination polymer {Fe(dpe)[Pt(CN)(4)]}⋅G (dpe = 1,2-di(4-pyridyl)ethylene; G = phenazine, anthracene, or naphthalene) exhibiting spin crossover and host-guest functions is reported. The magnetic properties of the framework are very sensitive to the chemical nature (aromatic or hydroxilic solvents) and the size of the included guest molecules.
Novel Iron(II) Microporous Spin-Crossover Coordination Polymers with Enhanced Pore Size
In this Communication, we report the synthesis and characterization of novel Hofmann-like spin-crossover porous coordination polymers of composition {Fe(L)[M(CN)4]}·G [L = 1,4-bis(4-pyridylethynyl)- benzene and MII = Ni, Pd, and Pt]. The spin-crossover properties of the framework are closely related to the number and nature of the guest molecules included in the pores.
Fast detection of water and organic molecules by a change of color in an iron(II) microporous spin-crossover coordination polymer.
Here we present a novel three-dimensional iron(II) spin-crossover porous coordination polymer based on the bis(1,2,4-triazol-4-yl)adamantane (tr(2)ad) ligand and the [Au(CN)(2)](-) metalloligand anions with the formula {Fe(3)(tr(2)ad)(4)[Au(CN)(2))](2)}[Au(CN)(2)](4)·G. The sorption/desorption of guest molecules, water, and five/six-membered-ring organic molecules is easily detectable because the guest-free and -loaded frameworks present drastically distinct coloration and spin-state configurations.
Reversible Chemisorption of Sulfur Dioxide in a Spin Crossover Porous Coordination Polymer
The chemisorption of sulfur dioxide (SO2) on the Hofmann-like spin crossover porous coordination polymer (SCO-PCP) {Fe(pz)[Pt(CN)4]} has been investigated at room temperature. Thermal analysis and adsorption-desorption isotherms showed that ca. 1 mol of SO2 per mol of {Fe(pz)[Pt(CN)4]} was retained in the pores. Nevertheless, the SO2 was loosely attached to the walls of the host network and completely released in 24 h at 298 K. Single crystals of {Fe(pz)[Pt(CN)4]}·nSO2 (n ≈ 0.25) were grown in water solutions saturated with SO2, and its crystal structure was analyzed at 120 K. The SO2 molecule is coordinated to the Pt(II) ion through the sulfur atom ion, Pt-S = 2.585(4) Å. This coordination…
The Effect of Pressure on the Cooperative Spin Transition in the 2D Coordination Polymer {Fe(phpy) 2 [Ni(CN) 4 ]}
The effect of pressure on the spin-transition properties of the 2D coordination polymer {Fe(phpy)2[Ni(CN)4]} is reported. The study has been carried out by means of variable-temperature (10–310 K) magnetic susceptibility measurements at applied pressures of 105 Pa to 1.0 GPa and spectroscopic studies in the visible region at room temperature (105 Pa–3.0 GPa). As the pressure is increased, the characteristic temperature of the spin transition is displaced to higher temperatures and the thermal hysteresis loop disappears. A cooperative first-order spin transition characterized by a piezo-hysteresis loop about 0.3 GPa wide was observed at 293 K.
Heterobimetallic MOFs containing tetrathiocyanometallate building blocks: Pressure-induced spin crossover in the porous {Fe II(pz)[Pd II(SCN) 4]} 3D coordination polymer
Here we describe the synthesis, structure, and magnetic properties of two related coordination polymers made up of self-assembling Fe(II) ions, pyrazine (pz), and the tetrathiocyanopalladate anion. Compound {Fe(MeOH) 2[Pd(SCN) 4]}·pz (1a) is a two-dimensional coordination polymer where the Fe(II) ions are equatorially coordinated by the nitrogen atoms of four [Pd(SCN) 4] 2- anions, each of which connects four Fe(II) ions, forming corrugated layers {Fe[Pd(SCN) 4]} ∞. The coordination sphere of Fe(II) is completed by the oxygen atoms of two CH 3OH molecules. The layers stack one on top of each other in such a way that the included pz molecule establishes strong hydrogen bonds with the coordin…
Polymorphism and “reverse” spin transition in the spin crossover system [Co(4-terpyridone)2](CF3SO3)2·1H2O
[EN] Compound [Co(4-terpyridone)(2)](CF3SO3)(2)center dot 1H(2)O, where 4-terpyridone is 2,6-bis(2-pyridyl)-4(1H)-pyridone, forms two polymorphs. Polymorph 1 displays a continuous spin conversion in the temperature region 300-120 K while polymorph 2 shows, on cooling, the onset of a continuous high-spin (HS) to low-spin (LS) conversion interrupted by an abrupt "reverse'' spin transition in the temperature region 217-203 K. The formed unstable HS intermediate phase (IP) undergoes a strong cooperative "normal'' spin transition characterised by a hysteresis loop 33 K wide. The structural data give support for a crystallographic phase transition, which takes place concomitantly with the "revers…
CCDC 929061: Experimental Crystal Structure Determination
Related Article: Zulema Arcís-Castillo, Francisco J. Muñoz-Lara, M. Carmen Muñoz, Daniel Aravena, Ana B. Gaspar, Juan F. Sánchez-Royo, Eliseo Ruiz, Masaaki Ohba, Ryotaro Matsuda, Susumu Kitagawa, and José A. Real|2013|Inorg.Chem.|52|12777|doi:10.1021/ic4020477