0000000000182381

AUTHOR

Vlatko Vedral

0000-0003-4561-5124

showing 18 related works from this author

Holonomic Quantum Computation

2008

In this brief review we describe the idea of holonomic quantum computation. The idea of geometric phase and holonomy is introduced in a general way and we provide few examples that should help the reader understand the issues involved.

Quantum technologyAlgebraPhysicsQuantum PhysicsOpen quantum systemClassical mechanicsHolonomicQuantum error correctionQuantum processQuantum operationQuantum algorithmHolonomy Quantum computationQuantum computer
researchProduct

When Casimir meets Kibble–Zurek

2012

Verification of the dynamical Casimir effect (DCE) in optical systems is still elusive due to the very demanding requirements for its experimental implementation. This typically requires very fast changes in the boundary conditions of the problem. We show that an ensemble of two-level atoms collectively coupled to the electromagnetic field of a cavity, driven at low frequencies and close to a quantum phase transition, stimulates the production of photons from the vacuum. This paves the way for an effective simulation of the DCE through a mechanism that has recently found experimental demonstration. The spectral properties of the emitted radiation reflect the critical nature of the system an…

Quantum phase transitionElectromagnetic fieldPhysicsPhotonCritical phenomenadynamical casimir effect cavity QEDCondensed Matter PhysicsAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della MateriaCasimir effectQuantum mechanicsAtomBoundary value problemMathematical PhysicsBoson
researchProduct

Vacuum induced berry phase: Theory and experimental proposal

2003

We investigate quantum effects in geometric phases arising when a two-level system is interacting with a quantized electromagnetic field. When the system is adiabatically driven along a closed loop in the parameter space, signatures of the field quantization are observable in the geometric phase. We propose a feasible experiment to measure these effects in cavity QED and also analyse the semi-classical limit, recovering the usual Berry phase results.

Electromagnetic fieldPhysicsJaynes–Cummings modelVacuumGround stateMathematical transformationObservableParameter spaceComputational geometryAtomic and Molecular Physics and OpticsClosed loop control systemQuantization (physics)Mathematical operatorGeometric phaseConvergence of numerical methodQuantum electrodynamicsQuantum mechanicsElectromagnetic fieldBerry connection and curvatureFunctionClosed loopLight polarizationJournal of Modern Optics
researchProduct

Optomechanical to mechanical entanglement transformation

2008

We present a scheme for generating entanglement between two mechanical oscillators that have never interacted with each other by using an entanglement-swapping protocol. The system under study consists of a Michelson-Morley interferometer comprising mechanical systems embodied by two cantilevers. Each of them is coupled to a field mode via the radiation pressure mechanism. Entanglement between the two mechanical systems is set by measuring the output modes of the interferometer. We also propose a control mechanism for the amount of entanglement based on path-length difference between the two arms. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

PhysicsCantileverField (physics)General Physics and AstronomyQuantum PhysicsQuantum entanglementMOVING MIRRORMICROMIRRORoptomechanical syetems quantum optics quantum information theoryMOVABLE MIRRORSMechanism (engineering)Mechanical systemInterferometryTransformation (function)Classical mechanicsRadiation pressureQuantum mechanicsRADIATION-PRESSURECAVITYNew Journal of Physics
researchProduct

Geometric quantum computation with Josephson qubits

2001

The quest for large scale integrability and flexibility has stimulated an increasing interest in designing quantum computing devices. A proposal based on small-capacitance Josephson junctions in the charge regime in which quantum gates are implemented by means of adiabatic geometric phases was discussed. The proposed works, are in the charge regime where the qubit is realized by two nearly degenerate charge states of a single electron box.

PhysicsJosephson effectQuantum networkEnergy Engineering and Power TechnologyHardware_PERFORMANCEANDRELIABILITYCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsQuantum technologyQuantum error correctionCondensed Matter::SuperconductivityQuantum mechanicsHardware_INTEGRATEDCIRCUITSQuantum algorithmElectrical and Electronic EngineeringQuantum informationSuperconducting quantum computingHardware_LOGICDESIGNQuantum computer
researchProduct

A scheme for entanglement extraction from a solid

2006

Some thermodynamical properties of solids, such as heat capacity and magnetic susceptibility, have recently been shown to be linked to the amount of entanglement in a solid. However this entanglement may appear a mere mathematical artifact of the typical symmetrization procedure of many-body wave function in solid state physics. Here we show that this entanglement is physical demonstrating the principles of its extraction from a typical solid state system by scattering two particles off the system. Moreover we show how to simulate this process using present-day optical lattices technology. This demonstrates not only that entanglement exists in solids but also that it can be used for quantum…

PhysicsQuantum PhysicsSolid-state physicsCondensed Matter - Mesoscale and Nanoscale PhysicsScatteringProcess (computing)General Physics and AstronomyFOS: Physical sciencesQuantum entanglementQuantum PhysicsHeat capacityMagnetic susceptibilitySTATEATOMSMesoscale and Nanoscale Physics (cond-mat.mes-hall)QUANTUM PHASE-TRANSITIONSymmetrizationStatistical physicsWave functionQuantum Physics (quant-ph)
researchProduct

Photon Production from the Vacuum Close to the Superradiant Transition: Linking the Dynamical Casimir Effect to the Kibble-Zurek Mechanism

2012

The dynamical Casimir effect (DCE) predicts the generation of photons from the vacuum due to the parametric amplification of the quantum fluctuations of an electromagnetic field. The verification of such an effect is still elusive in optical systems due to the very demanding requirements of its experimental implementation. We show that an ensemble of two-level atoms collectively coupled to the electromagnetic field of a cavity, driven at low frequencies and close to a quantum phase transition, stimulates the production of photons from the vacuum. This paves the way to an effective simulation of the DCE through a mechanism that has recently found experimental demonstration. The spectral prop…

Quantum phase transitionKibble-Zurek mechanismElectromagnetic fieldPhysicsPhotonCavity quantum electrodynamicsGeneral Physics and AstronomyDynamical Casimir Effect Cold Atoms Cavity QEDRadiation01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasCasimir effectQuantum mechanics0103 physical sciences010306 general physicsQuantum fluctuation
researchProduct

Geometric phase in open systems.

2003

We calculate the geometric phase associated to the evolution of a system subjected to decoherence through a quantum-jump approach. The method is general and can be applied to many different physical systems. As examples, two main source of decoherence are considered: dephasing and spontaneous decay. We show that the geometric phase is completely insensitive to the former, i.e. it is independent of the number of jumps determined by the dephasing operator.

PhysicsSpontaneous decaySpontaneous decayDensity matrixQuantum PhysicsQuantum decoherenceMarkovian master equationDephasingOperator (physics)Physical systemGeneral Physics and AstronomyFOS: Physical sciencesCondensed Matter::Mesoscopic Systems and Quantum Hall EffectGeometric phaseBerrys phaseStatistical physicsQuantum Physics (quant-ph)Physical review letters
researchProduct

Geometric phase induced by a cyclically evolving squeezed vacuum reservoir

2006

We propose a new way to generate an observable geometric phase by means of a completely incoherent phenomenon. We show how to imprint a geometric phase to a system by "adiabatically" manipulating the environment with which it interacts. As a specific scheme we analyse a multilevel atom interacting with a broad-band squeezed vacuum bosonic bath. As the squeezing parameters are smoothly changed in time along a closed loop, the ground state of the system acquires a geometric phase. We propose also a scheme to measure such geometric phase by means of a suitable polarization detection.

DECOHERENCEPhysicsQuantum PhysicsBerry phaseGeneral Physics and AstronomyFOS: Physical sciencesObservableMarkovian processPolarization (waves)Measure (mathematics)QUANTUM COMPUTATIONLIGHTClassical mechanicsGeometric phaseQuantum mechanicsAtom (measure theory)Quantum informationQuantum statistical mechanicsGround stateQuantum Physics (quant-ph)
researchProduct

Detection of Geometric Phases in Superconducting Nanocircuits

2000

When a quantum mechanical system undergoes an adiabatic cyclic evolution it acquires a geometrical phase factor in addition to the dynamical one. This effect has been demonstrated in a variety of microscopic systems. Advances in nanotechnologies should enable the laws of quantum dynamics to be tested at the macroscopic level, by providing controllable artificial two-level systems (for example, in quantum dots and superconducting devices). Here we propose an experimental method to detect geometric phases in a superconducting device. The setup is a Josephson junction nanocircuit consisting of a superconducting electron box. We discuss how interferometry based on geometrical phases may be real…

SuperconductivityJosephson effectPhysicsQuantum PhysicsMultidisciplinaryCondensed Matter - Mesoscale and Nanoscale PhysicsQuantum dynamicsFOS: Physical sciencesElectronPhase factorQuantum dotQuantum mechanicsCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)Quantum Physics (quant-ph)Adiabatic processQuantum computer
researchProduct

Geometric-phase backaction in a mesoscopic qubit-oscillator system

2012

We illustrate a reverse Von Neumann measurement scheme in which a geometric phase induced on a quantum harmonic oscillator is measured using a microscopic qubit as a probe. We show how such a phase, generated by a cyclic evolution in the phase space of the harmonic oscillator, can be kicked back on the qubit, which plays the role of a quantum interferometer. We also extend our study to finite-temperature dissipative Markovian dynamics and discuss potential implementations in micro- and nanomechanical devices coupled to an effective two-level system. © 2012 American Physical Society.

Quantum phase transitionPhysicsNANOMECHANICAL RESONATOR; BACK-ACTION; QUANTUM; OPTOMECHANICS; MECHANICS; EVOLUTION; MODEAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della MateriaPhase qubitOptical phase spaceClassical mechanicsGeometric phaseQuantum harmonic oscillatorPhase spaceQubitQuantum mechanicsGeometric phases atomic physics quantum interferometryHarmonic oscillator
researchProduct

Vacuum induced spin-1/2 Berry's phase.

2002

We calculate the Berry phase of a spin-1/2 particle in a magnetic field considering the quantum nature of the field. The phase reduces to the standard Berry phase in the semiclassical limit and eigenstate of the particle acquires a phase in the vacuum. We also show how to generate a vacuum induced Berry phase considering two quantized modes of the field which has a interesting physical interpretation.

PhysicsQuantum PhysicsCondensed matter physicsField (physics)Phase (waves)General Physics and AstronomySemiclassical physicsFOS: Physical sciencesVacuum Geometric phaseNonlinear Sciences::Chaotic DynamicsQuantization (physics)Geometric phaseQuantum mechanicsQuantum theoryBerry connection and curvatureQuantum field theorySpin (physics)Quantum Physics (quant-ph)Physical review letters
researchProduct

Transitionless quantum driving in open quantum systems

2014

Abstract We extend the concept of superadiabatic dynamics, or transitionless quantum driving, to quantum open systems whose evolution is governed by a master equation in the Lindblad form. We provide the general framework needed to determine the control strategy required to achieve superadiabaticity. We apply our formalism to two examples consisting of a two-level system coupled to environments with time-dependent bath operators.

PhysicsDDC 530 / PhysicsGeneral Physics and Astronomyquantum control; quantum open system; superadiabatic dynamics; Physics and Astronomy (all)Physics and Astronomy(all)Settore FIS/03 - Fisica Della Materiasuperadiabatic dynamicsQuantum SystemsPhysics and Astronomy (all)Formalism (philosophy of mathematics)Classical mechanics/dk/atira/pure/subjectarea/asjc/3100quantum open systemMaster equationtransitionless quantum driving adiabatic theorem optima control open quantum systemddc:530quantum controlQuantumQuantenmechanisches System
researchProduct

Anyons and transmutation of statistics via vacuum induced Berry phase

2004

We show that bosonic fields may present anyonic behavior when interacting with a fermion in a Jaynes-Cummings-like model. The proposal is accomplished via the interaction of a two-level system with two quantized modes of a harmonic oscillator; under suitable conditions, the system acquires a fractional geometric phase. A crucial role is played by the entanglement of the system eigenstates, which provides a two-dimensional confinement in the effective evolution of the system, leading to the anyonic behavior. For a particular choice of parameters, we show that it is possible to transmute the statistics of the system continually from fermions to bosons. We also present an experimental proposal…

PhysicsCondensed Matter::Quantum GasesQuantum PhysicsNuclear transmutationFOS: Physical sciencesQuantum PhysicsFermionQuantum entanglementTopological quantum computerAtomic and Molecular Physics and OpticsBosonic excitationHigh Energy Physics::TheoryGeometric phaseQuantum mechanicsStatisticsAnyonQuantum Physics (quant-ph)Harmonic oscillatorEigenvalues and eigenvectorsBoson
researchProduct

Spin-1/2 geometric phase driven by decohering quantum fields

2003

We calculate the geometric phase of a spin-1/2 system driven by a one and two mode quantum field subject to decoherence. Using the quantum jump approach, we show that the corrections to the phase in the no-jump trajectory are different when considering an adiabatic and non-adiabatic evolution. We discuss the implications of our results from both the fundamental as well as quantum computational perspective.

PhysicsMarkov processeQuantum discordQuantum PhysicsQuantum dynamicsGeneral Physics and AstronomyQuantum simulatorFOS: Physical sciencesOpen quantum systemClassical mechanicsQuantum error correctionquantum fieldQuantum mechanicsQuantum processQuantum algorithmQuantum dissipationQuantum Physics (quant-ph)
researchProduct

Non-classicality of optomechanical devices in experimentally realistic operating regimes

2013

Enforcing a non-classical behavior in mesoscopic systems is important for the study of the boundaries between quantum and classical world. Recent experiments have shown that optomechanical devices are promising candidates to pursue such investigations. Here we consider two different setups where the indirect coupling between a three-level atom and the movable mirrors of a cavity is achieved. The resulting dynamics is able to conditionally prepare a non-classical state of the mirrors by means of projective measurements operated over a pure state of the atomic system. The non-classical features are persistent against incoherent thermal preparation of the mechanical systems and their dissipati…

PhysicsQuantum PhysicsMesoscopic physicsQuantum decoherencequantum optomechanical systems entanglement open quantum systems mesoscopic quantum systemsCavity quantum electrodynamicsFOS: Physical sciencesSettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and OpticsMechanical systemChemical couplingQuantum mechanicsThermalAtomQuantum Physics (quant-ph)Quantum
researchProduct

Can entanglement be extracted from many body systems?

2007

Some thermodynamical properties of solids, such as heat capacity and magnetic susceptibility, have recently been shown to be linked to the amount of entanglement in a solid. Until now, however, it was not clear whether this entanglement can be used as a resource in quantum information theory. Here we show that this entanglement is physical, demonstrating the principles of its extraction from a typical spin chain by scattering two particles off the system. Moreover, we show how to simulate this process using present-day optical lattice technology. © 2007 World Scientific Publishing Company.

PhysicsOptical latticePhysics and Astronomy (miscellaneous)ScatteringCURRENT SITUATIONQuantum entanglementSquashed entanglementHeat capacityMultipartite entanglementATOMSQuantum mechanicsQUANTUM PHASE-TRANSITIONMECHANICSQuantum informationAmplitude damping channelCONTROLLED COLLISIONS
researchProduct

Berry's phase in Cavity QED: proposal for observing an effect of field quantization

2002

Geometric phases are well known in classical electromagnetism and quantum mechanics since the early works of Pantcharatnam and Berry. Their origin relies on the geometric nature of state spaces and has been studied in many different systems such as spins, polarized light and atomic physics. Recent works have explored their application in interferometry and quantum computation. Earlier works suggest how to observe these phases in single quantum systems adiabatically driven by external classical devices or sources, where, by classical, we mean any system whose state does not change considerably during the interaction time: an intense magnetic field interacting with a spin 1/2, or a birefringe…

Electromagnetic fieldPhysicsQuantum PhysicsVacuumFOS: Physical sciencesSemiclassical physicsAtomic and Molecular Physics and OpticsQuantization of the electromagnetic fieldQuantization (physics)Quantum electrodynamicsQuantum mechanicsfield quantizationAtomQuantum systemBerry connection and curvatureQuantum field theoryQuantum Physics (quant-ph)
researchProduct