0000000000182445

AUTHOR

Dominique Vrel

Time-resolved XRD experiments for a fine description of mechanisms induced during reactive sintering

The control of Mechanically Activated Field Activated Pressure Assisted Synthesis hereafter called the MAFAPAS process is the main objective to be achieved for producing nanostructure materials with a controlled consolidation level. Consequently, it was essential to develop characterization tools "in situ" such as the Time Resolved X-ray Diffraction (TRXRD), with an X-ray synchrotron beam (H10, LURE Orsay) coupled to an infrared thermography to study simultaneously structural transformations and thermal evolutions. From the 2003 experiments, we took the opportunity to modify the sample-holder in order to reproduce the better synthesis conditions of the MAFAPAS process, but without the conso…

research product

Microstructural study of titanium carbonitride elaborated by combustion synthesis

Abstract The self-propagating high-temperature synthesis (S.H.S.) process, which is promising for the fabrication of ceramic materials, was chosen to elaborate titanium carbonitride materials. The influence of parameters such as nitrogen gas pressure and carbon ratio on the microstructure was studied. A single phase product of Ti(C,N) is obtained for a carbon ratio under 15 at.% and a nitrogen pressure of 36 MPa. The increase of the carbon ratio corresponds to a decrease of the maximum temperature reached during the synthesis. Time resolved X-ray diffraction measurements (TRXRD) with the synchrotron radiation were used to determine the reaction mechanisms. We could observe that the synthesi…

research product

Investigation of the SHS mechanisms of titanium nitride by in situ time-resolved diffraction and infrared thermography

Abstract The self-propagating high-temperature synthesis (SHS) or combustion synthesis is a promising process to produce advanced ceramics due to the high purity of the elaborated materials and the very short synthesis time. Titanium nitride has been synthesised from pressed titanium powder and a nitrogen gas flow under a 0.1 MPa pressure. The influence of the addition of a TiN diluent was investigated. For the first time, SHS reaction mechanisms were determined from in situ time-resolved X-ray diffraction (TRXRD) experiments using the synchrotron radiation. These experiments were coupled with infrared thermography to study the propagation of the combustion reaction. It appeared that the in…

research product

Investigations of the formation mechanism of nanostructured NbAl3 via MASHS reaction

Abstract The nanostructured NbAl3 intermetallic compound was synthesized using the mechanically-activated self-propagating high-temperature synthesis (MASHS) technique. This process results from the combination of two steps: a short duration ball-milling of a pure elemental Nb+3Al powder mixture followed by a self-propagating high-temperature synthesis (SHS) reaction induced by the Nb+3Al reaction exothermicity. Synchrotron time-resolved XRD coupled with a 2D infrared camera were used to investigate the structural and thermal evolutions during the SHS reaction, and to study in situ the mechanism of NbAl3 formation. The influence of the incoming heat flux and the mechanical activation effect…

research product

Mechanical activation effect on the self-sustaining combustion reaction in the Mo–Si system

Abstract Nanostructured molybdenum disilicide (MoSi2) was synthesized using an alternative route called MASHS (mechanically activated self-propagating high-temperature synthesis). This original process combines a short duration ball milling (MA) with a self-sustaining combustion (SHS). These two steps were investigated. The microstructure evolution of the powder mixture during mechanical activation was monitored using XRD profile analysis and TEM investigations. Short duration ball milling of (Mo+2Si) powder produces Mo and Si nanocrystallites into micrometric particles. It was demonstrated that pure α-MoSi2 with nanometric structure (DMoSi2=88 nm) could be produced via a very fast combusti…

research product