6533b870fe1ef96bd12d0414

RESEARCH PRODUCT

Mechanical activation effect on the self-sustaining combustion reaction in the Mo–Si system

Eric GaffetFrédéric BernardDominique VrelCh. GrasCh. Gras

subject

NanostructureMaterials scienceMechanical EngineeringMetallurgyMetals and AlloysMolybdenum disilicideCombustionMicrostructurechemistry.chemical_compoundChemical engineeringchemistryMechanics of MaterialsPowder metallurgyMaterials ChemistryProfile analysisBall millPowder mixture

description

Abstract Nanostructured molybdenum disilicide (MoSi2) was synthesized using an alternative route called MASHS (mechanically activated self-propagating high-temperature synthesis). This original process combines a short duration ball milling (MA) with a self-sustaining combustion (SHS). These two steps were investigated. The microstructure evolution of the powder mixture during mechanical activation was monitored using XRD profile analysis and TEM investigations. Short duration ball milling of (Mo+2Si) powder produces Mo and Si nanocrystallites into micrometric particles. It was demonstrated that pure α-MoSi2 with nanometric structure (DMoSi2=88 nm) could be produced via a very fast combustion front in contrast to the classical SHS process.

https://doi.org/10.1016/s0925-8388(00)01221-4