0000000000053222

AUTHOR

Frédéric Bernard

showing 89 related works from this author

Chemical heterogeneities in nanometric titanomagnetites prepared by soft chemistry and studied ex situ : evidence for fe-segregation and oxidation ki…

2001

Nanocrystalline Fe-based spinels with composition Fe3-xTixO4 are synthesized using soft chemistry. Two steps are involved:  precipitation in an aqueous solution followed by thermal annealing under a reducing mixture of N2/H2/H2O gases. Fe-segregation is found inside stoichiometric particles when the powders are studied ex situ; they exhibit a strong surface iron enrichment. This heterogeneity is related to kinetic effects linked to the difference of mobility between Fe2+ and Ti4+ cations during the partial oxidation of cations occurring ex situ. Stresses in the grains induced by oxidation govern the oxidation kinetics and lead to an abrupt compositional variation inside each particle. These…

Aqueous solutionMaterials sciencePrecipitation (chemistry)Analytical chemistry02 engineering and technology[SPI.MAT] Engineering Sciences [physics]/Materials010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesSoft chemistryNanocrystalline material0104 chemical sciencesSurfaces Coatings and Films[SPI.MAT]Engineering Sciences [physics]/MaterialsX-ray photoelectron spectroscopyMaterials ChemistryParticlePartial oxidationPhysical and Theoretical Chemistry0210 nano-technologyStoichiometryComputingMilieux_MISCELLANEOUS
researchProduct

Mechanically Activated Self-Propagating High Temperature Synthesis (MASHS) Applied to the MoSi<sub>2</sub> and FeSi<sub>2</sub&g…

1999

Materials scienceMechanics of MaterialsMechanical EngineeringMetallurgySelf-propagating high-temperature synthesisGeneral Materials ScienceComposite materialCondensed Matter PhysicsPhase formationMaterials Science Forum
researchProduct

Design of a reactor operating in supercritical water conditions using CFD simulations. Examples of synthesized nanomaterials

2011

International audience; Direct information about fluids under supercritical water conditions is unfeasible due to the engineering restrictions at high pressure and high temperature. Numerical investigations based on computational fluid dynamics (CFD) calculations are widely used in order to get extensive information on the fluid behavior, particularly to help the design of a new reactor. This paper presents the numerical investigations performed on an original supercritical water device, especially in the level of the reactor. CFD calculations allow to design and optimize the present reactor described in this study. Currently, this process produces some nanometric oxide powders in continuou…

Materials scienceCONTINUOUS HYDROTHERMAL SYNTHESISGeneral Chemical EngineeringNuclear engineeringOxideNanotechnology02 engineering and technologyComputational fluid dynamics010402 general chemistry7. Clean energy01 natural sciencesMIXERNanomaterialsCrystallinitychemistry.chemical_compoundNANOPOWDERSMETAL-OXIDE NANOPARTICLESNano-oxidesFluentPARTICLES[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringPhysical and Theoretical ChemistryHigh-resolution transmission electron microscopySupercritical waterNanomaterialsbusiness.industry[ SPI.GPROC ] Engineering Sciences [physics]/Chemical and Process Engineering021001 nanoscience & nanotechnologyCondensed Matter PhysicsCFD simulationsSupercritical fluid0104 chemical sciencesPowder synthesisNANOCRYSTALSchemistryScientific methodFluent0210 nano-technologybusiness
researchProduct

Evidence for H2S gas as an intermediate species in the reaction mechanism of trapping hydrogen by cobalt disulfide

2011

Cobalt sulfide prepared by aqueous precipitation using Na2S and a Co(II) salt is known to trap hydrogen at room temperature and low pressure. The importance of oxidation of the primary CoS precipitate with atmospheric oxygen with respect to its efficiency as a hydrogen absorber is demonstrated. This stage of oxidation produces a mixture of two solid phases: a partially crystallized cobalt hydroxide Co(OH)2 and an amorphous cobalt sulfide CoS2 with a Co(OH)2/CoS2 molar ratio of 1 as predicted by thermodynamics. This biphasic product is probably the basic cobalt sulfide CoSOH considered in older and even more recent work. This product traps molecular hydrogen with a H2/Co molar ratio of 0.5 w…

Reaction mechanismAqueous solutionHydrogenCobalt hydroxideRenewable Energy Sustainability and the EnvironmentChemistryHydrogen sulfideInorganic chemistryEnergy Engineering and Power Technologychemistry.chemical_elementCondensed Matter PhysicsCobalt sulfidechemistry.chemical_compoundFuel TechnologyCobaltStoichiometryInternational Journal of Hydrogen Energy
researchProduct

Time-resolved XRD experiments for a fine description of mechanisms induced during reactive sintering

2005

The control of Mechanically Activated Field Activated Pressure Assisted Synthesis hereafter called the MAFAPAS process is the main objective to be achieved for producing nanostructure materials with a controlled consolidation level. Consequently, it was essential to develop characterization tools "in situ" such as the Time Resolved X-ray Diffraction (TRXRD), with an X-ray synchrotron beam (H10, LURE Orsay) coupled to an infrared thermography to study simultaneously structural transformations and thermal evolutions. From the 2003 experiments, we took the opportunity to modify the sample-holder in order to reproduce the better synthesis conditions of the MAFAPAS process, but without the conso…

DiffractionMaterials scienceNanostructureConsolidation (soil)reaction sintering mechanical activationMetals and AlloysSinteringNanotechnologylcsh:Chemical technologyCondensed Matter PhysicsMicrostructureSynchrotronlaw.inventionnanostructure materialslawThermographyThermalMaterials ChemistryCeramics and Compositeslcsh:TP1-1185field activationpressure assisted synthesisScience of Sintering
researchProduct

Anomalous Valence Contrast of Metal Transition in Nanocrystalline Ferrite

2001

Materials scienceValence (chemistry)Condensed matter physicsAnomalous scatteringRietveld refinementMechanical EngineeringBeta ferriteCondensed Matter PhysicsNanocrystalline materialMetalCrystallographyMechanics of Materialsvisual_artvisual_art.visual_art_mediumGeneral Materials SciencePowder diffractionMaterials Science Forum
researchProduct

New insight on the lithium hydride–water vapor reaction system

2018

Abstract The reaction of lithium hydride (LiH) powder with pure water vapor (H2O and D2O) was studied by thermogravimetry and in situ infrared spectroscopy at 298 K over a large pressure range. The mean particle size of LiH is around 27 μm. At very low pressure, the hydrolysis starts with the formation of lithium oxide (Li2O). Then, both Li2O and lithium hydroxide (LiOH) are formed on increasing pressure, thus, creating a Li2O/LiOH bilayer. The reaction takes place through the consumption of LiH and the formation of Li2O at the LiH/Li2O interface and through the consumption of Li2O and the formation of LiOH at the Li2O/LiOH interface. Above 10 hPa, only the monohydrate LiOH·H2O is formed. T…

Materials scienceDiffusionInorganic chemistryEnergy Engineering and Power Technology02 engineering and technology7. Clean energyLithium hydroxidechemistry.chemical_compound0502 economics and businessHydration reaction[CHIM]Chemical Sciences050207 economicsComputingMilieux_MISCELLANEOUSRenewable Energy Sustainability and the Environment05 social sciences021001 nanoscience & nanotechnologyCondensed Matter PhysicsRate-determining step[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryThermogravimetryFuel TechnologychemistryLithium hydrideLithium oxide0210 nano-technologyWater vaporInternational Journal of Hydrogen Energy
researchProduct

Spark plasma sintering of cobalt ferrite nanopowders prepared by coprecipitation and hydrothermal synthesis.

2007

International audience; Cobalt ferrite exhibits a high coercivity at room temperature and a strong magnetic anisotropy compared to the other spinel ferrites and, consequently appears as an interesting material for permanent magnets and high-density recording. The magnetic properties depend also on the crystallite size. In order to keep the powder properties in a bulk material, dense nanostructured cobalt ferrite has to be sintered. A field activated sintering process like spark plasma sintering (SPS) may be promising for such challenge. The present paper deals with: (i) the preparation of cobalt ferrite by two methods: coprecipitation and hydrothermal synthesis in supercritical water; (ii) …

Materials scienceCoprecipitationSpinelMetallurgySpark plasma sinteringSinteringengineering.materialCoercivityPowders-chemical preparationGrain sizeGrain growthSinteringMagnetMagnetic propertiesMaterials ChemistryCeramics and CompositesengineeringFerritesCrystallite
researchProduct

Synthesis of FeAl Hetero-Nanostructured Bulk Parts via Spark Plasma Sintering of Milled Powder

2006

AbstractSpark plasma sintering (SPS) has been used in order to introduce nanocrystalline grains within fully dense FeAl consolidated parts. Hetero-nanostructured parts, consisting of nano, ultrafine and micrometric grains, have been successfully processed when milled - Y2O3 reinforced - FeAl powder was used. The large temperature differences that are spontaneously generated during the SPS process as well as the use of milled powder account for the formation of such interesting structures. The grain size distribution - that is suggested to be very potent to improve both strength and ductility - could be significantly modified by a proper selection of sintering temperature and holding time.

010302 applied physicsMaterials scienceMetallurgySinteringSpark plasma sinteringFEAL02 engineering and technology021001 nanoscience & nanotechnologyMicrostructure01 natural sciencesNanocrystalline material[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][SPI.MECA.MEMA] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph][PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph][PHYS.MECA.MEMA] Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph]Powder metallurgy0103 physical sciencesNano-[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph][PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][CHIM.CRIS]Chemical Sciences/Cristallography[CHIM.CRIS] Chemical Sciences/Cristallography0210 nano-technologyDuctilityComputingMilieux_MISCELLANEOUS
researchProduct

Experimental Equipment for Studying the Residual Stresses Developed During High Temperature Reactions by X-Ray Diffraction

1996

This paper describes a device dedicated to studyng, by X-ray diffraction the residual stresses developed on surface samples as a function of temperature and atmosphere conditions. The setup consists of : a.) an horizontal axis goniometer which allows the programmed positionning of the sealed X-ray source and of the linear detector. b.) a high temperature controlled atmosphere chamber Particular attention has been paid to the thermal stability up to 1200°C and the accurate position on the sample.

010302 applied physicsDiffractionControlled atmosphereChemistrybusiness.industryDetectorGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesAtmosphereOpticsResidual stressGoniometer[PHYS.HIST]Physics [physics]/Physics archives0103 physical sciencesX-ray crystallographyThermal stability0210 nano-technologybusiness
researchProduct

In-situ time resolved X-ray diffraction study of the formation of the nanocrystalline NbAl3 phase by mechanically activated self-propagating high-tem…

1999

The mechanically activated self-propagating high-temperature synthesis (MASHS) technique was used to produce a NbAl3 intermetallic compound. This process results from the combination of two steps: a mechanical activation of the Nb 3Al powder mixture which is followed by a self-propagating high-temperature synthesis (SHS) reaction, induced by the exothermal character of the reaction Nb3Al. An original experiment was designed to study in-situ the formation of the NbAl3 phase in the combustion front: time-resolved X-ray diffraction coupled with an infrared imaging technique and a thermocouple measurement were performed to monitor the structural and thermal evolution during the SHS reaction. Ow…

Materials scienceMechanical EngineeringNiobiumIntermetallicAnalytical chemistrySelf-propagating high-temperature synthesischemistry.chemical_elementCondensed Matter PhysicsNanocrystalline materialCrystallographychemistryMechanics of MaterialsPhase (matter)X-ray crystallographyGeneral Materials ScienceAluminidePowder mixture
researchProduct

Phénomènes de ségrégation dans les ferrites de titane nanométriques : apports complémentaires de différentes techniques expérimentales (DRX, XPS, EXA…

2002

Grâce a la complementarite de diverses techniques deux phenomenes de segregation ont ete mis en evidence dans les ferrites de titane nanostructures: une segregation cinetique (dite dynamique) et une segregation thermodynamique. Par des techniques d'analyse locales (MET, XPS) et statistiques (DRX...), des heterogeneites au sein des grains de poudre contenant des cations Fe 2+ ont ete mises en evidence lors de leur etude a l'air. Leur origine est cinetique et decoule d'une oxydation incomplete des cations Fe 2+ . Des affinement de Rietveld de diagrammes de diffraction des rayons X et diffraction de neutrons ont permis de montrer quant a eux que le titane ainsi que toutes les lacunes creees lo…

CrystallographyMaterials scienceGeneral Physics and AstronomyJournal de Physique IV (Proceedings)
researchProduct

Dense nanostructured materials obtained by spark plasma sintering and field activated pressure assisted synthesis starting from mechanically activate…

2004

The preparation of highly dense bulk materials with a grain size in the range of a few to a few hundreds nanometers is currently the objective of numerous studies. In our research we have achieved a measure of success in this regard by using the methods of mechanically-activated, field-activated, pressure-assisted synthesis, MAFAPAS, which has been patented, and mechanically-activated spark plasma sintering, MASPS. Both methods, which consist of the combination of a mechanical activation step followed by a consolidation step under the simultaneous influence of an electric field and mechanical pressure, have led to the formation of dense nanostructured ceramics, intermetallics, and composite…

Materials scienceMetallurgyMetals and AlloysIntermetallicSpark plasma sinteringSinteringFEALlcsh:Chemical technologyCondensed Matter PhysicsGrain sizemechanical activationChemical engineeringElectric fieldvisual_artMaterials ChemistryCeramics and Compositesvisual_art.visual_art_mediumlcsh:TP1-1185Nanometrefield activationCeramicpressure assisted synthesisspark plasma sinteringScience of Sintering
researchProduct

In-situ time-resolved X-ray diffraction experiments applied to self-sustained reactions from mechanically activated mixtures

2000

Resume . Le procede MASHS (Mechanically activated self-propagating high-temperature synthesis) apparait etre un procede alternatif interessant pour elaborer des materiaux tels que des ceramiques, des composites ou des intermetalliques. La formation au cours d'une reaction de combustion autoentretenue d'intermetalliques, tels que NbAlj et M0S12, a ete suivie in-situ et en temps reel en couplant la diffraction des rayons X, produits par le rayonnement synchrotron (Ligne D43, LURE - Orsay) et, une thermographie infrarouge. A partir de temps d'acquisition tres courts (de 30 ms a 100ms par diffractogrammes), il a ete possible de determiner simultanement les evolutions structurales et thermiques.…

OpticsChemistrybusiness.industryX-ray crystallographyGeneral Physics and AstronomyPhysical chemistryTime resolutionbusinessLe Journal de Physique IV
researchProduct

Experimental investigation on lithium borohydride hydrolysis

2010

Abstract Lithium borohydride, one of the highest energy density chemical energy carriers, is considered as an attractive potential hydrogen storage material due to its high gravimetric hydrogen density (19.6%). Belonging to borohydride compounds, it presents a real issue to overcome aims fixed by the U.S. Department of Energy in the field of energy, and so crystallizes currently attention and effort to use this material for large scale civil and military applications. However, due to its important hygroscopicity, lithium borohydride is a hazardous material which requires specific handling conditions for industrial aspects. In order to understand much more the reaction mechanism involved bet…

HydrogenRenewable Energy Sustainability and the EnvironmentInorganic chemistryEnergy Engineering and Power Technologychemistry.chemical_elementCondensed Matter PhysicsBorohydrideLithium metaboratechemistry.chemical_compoundHydrogen storageFuel TechnologychemistryLithium borohydrideLithiumDehydrogenationThermal analysisInternational Journal of Hydrogen Energy
researchProduct

Oxidation resistance of Ti 3 AlC 2 and Ti 3 Al 0.8 Sn 0.2 C 2 MAX phases: A comparison

2019

Ti3AlC2 and Ti3Al0.8Sn0.2C2 MAX phase powders are densified using Spark Plasma Sintering technique to obtain dense bulk materials. Oxidation tests are then performed over the temperature range 800-1000°C under synthetic air on the two different materials in order to compare their oxidation resistance. It is demonstrated that, in the case of the Ti3Al0.8Sn0.2C2 solid solution, the oxide layers consist in TiO2, Al2O3 and SnO2. The presence of Sn atoms in

010302 applied physicsMaterials scienceOxideAnalytical chemistrySpark plasma sintering02 engineering and technologyAtmospheric temperature range021001 nanoscience & nanotechnology01 natural sciences3. Good healthchemistry.chemical_compoundchemistryPhase (matter)0103 physical sciencesMaterials ChemistryCeramics and CompositesMAX phases0210 nano-technologyOxidation resistanceSolid solutionJournal of the American Ceramic Society
researchProduct

Cation Distribution in a Titanium Ferrite Fe2.75Ti0.25O4Measured byin-SituAnomalous Powder Diffraction Using Rietveld Refinement

1998

Many ferrites contain different cations with various valence states and location in the spinel structure. In compounds such as these, only a combination of different techniques such as Mussbauer spectroscopy, IR analysis, and thermogravimetry allows the distribution of cations to be obtained. For very complicated distributions, the mathematical decomposition of derivative thermogravimetric curves (DTG) leading to quantitative distribution is uncertain. In this paper, we present an alternative technique based on resonant diffraction. The anomalous scattering of each cation in the crystalline material is used to determine its amount and position by Rietveld refinement. Since the energy for su…

DiffractionValence (chemistry)Anomalous scatteringChemistryRietveld refinementAnalytical chemistryCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsInorganic ChemistryThermogravimetryAbsorption edgeMaterials ChemistryCeramics and CompositesFerrite (magnet)Physical and Theoretical ChemistryPowder diffractionJournal of Solid State Chemistry
researchProduct

Synthesis of nanocrystalline NbAl3 by mechanical and field activation

2001

Abstract The mechanically-activated, field-activated, and pressure-assisted synthesis (MAFAPAS) process, which combines the simultaneous synthesis and densification of nanophase materials, was utilized to produce nanocrystalline NbAl3 material from Nb+3Al mechanically activated powders. Nb+3Al elemental powders were co-milled for a short time in a specially designed planetary ball mill to obtain nanoscale distributed reactants but to avoid the formation of any product phases. These were then subjected to high AC currents (1500–1650 A) and uniaxial pressures (56–84 MPa). Under these conditions, a reaction is initiated by field activation and completed within a short period of time (3–6 min).…

Materials scienceMechanical EngineeringMetallurgyMetals and AlloysNiobiumchemistry.chemical_elementGeneral ChemistryElectronNanocrystalline materialMatrix (chemical analysis)chemistryChemical engineeringMechanics of MaterialsMaterials ChemistryRelative densityCrystalliteNanoscopic scaleBall millIntermetallics
researchProduct

Synthesis of YAG nanopowder by the co-precipitation method: Influence of pH and study of the reaction mechanisms

2012

International audience; YAG nanopowders with an average grain size of 30 nm have been successfully synthesized by the co-precipitation method using nitrates with precipitant of ammonium hydrogen carbonate. The influence of precipitation conditions such as pH, aging time and calcination temperature on the formation of secondary phases has been studied. The accurate control of pH value at every stage of precipitation process is crucial to avoid the presence of YAM (Yttrium Aluminium Monoclinic, Y4Al2O9) and yttrium oxide (Y2O3) after calcination. The reaction mechanisms have been investigated using different techniques such as infrared spectroscopy, x-ray diffraction and thermal analyses. The…

Materials scienceCoprecipitationInorganic chemistryOxideTRANSPARENT CERAMICSFABRICATIONchemistry.chemical_element02 engineering and technology01 natural scienceslaw.inventionInorganic Chemistrychemistry.chemical_compoundlawAluminiumYTTRIUM-ALUMINUM-GARNET0103 physical sciencesMaterials ChemistryNANO-SIZED POWDERCalcinationPhysical and Theoretical ChemistryPerovskite (structure)010302 applied physicsPRECURSORSPrecipitation (chemistry)Yttrium021001 nanoscience & nanotechnologyCondensed Matter PhysicsElectronic Optical and Magnetic MaterialschemistryChemical engineeringPRECIPITATIONCeramics and CompositesLASER0210 nano-technologyMonoclinic crystal system
researchProduct

Dense Mosi2 produced by reactive flash sintering: Control of Mo/Si agglomerates prepared by high-energy ball milling

2011

The objective of this work is to determine the influence of the agglomeration state of the MA mixture on the microstructure and the chemical composition of SPS end-products. In order to produce MoSi2 with a microstructure and a density perfectly controlled via reactive sintering implying an SHS reaction, the characteristics of Mo/Si mechanically activated (MA) powder mixtures were investigated. Indeed, the MA powders have been characterized in terms of their surface specific area, size, phase composition and microstructure. The high-energy milling allows the formation of agglomerates (0.8 to 800 μm) composed of nanometric crystallites of molybdenum and silicon, as a consequence of a continu…

Materials scienceSiliconGeneral Chemical EngineeringSinteringMineralogySpark plasma sinteringchemistry.chemical_elementMicrostructurechemistryChemical engineeringAgglomerateSpecific surface areaCrystalliteBall millPowder Technology
researchProduct

Effect of coherency of domain walls on X-ray diffraction diagrams: Case a crystal with a low tetragonality

2000

Les diagrammes de diffraction des rayons X d'une poudre ou d'une ceramique de BaTiO 3 tetragonal ont ete etudies. Une correlation entre les caracteristiques des profils des raies de diffraction (intensite, forme, position,...) et la microstructure en domaines ferroelectriques a ete mise en evidence. A partir d'une approche numerique, le calcul des diagrammes de diffraction montre que la modification des profils des raies de diffraction du compose tetragonal est fortement dependante de la microstructure en domaines ferroelectriques. Ce a du prendre en compte l'existence d'un certain degre de coherence dans les murs de domaines entre deux domaines a 90° adjacents. Il a par ailleurs ete mis en…

CrystallographyChemistryX-ray crystallographyGeneral Physics and AstronomyMineralogyWall thicknessLe Journal de Physique IV
researchProduct

Reactive Sintering of molybdenum disilicide by Spark Plasma Sintering from mechanically activated powder mixtures: Processing parameters and properti…

2008

Abstract Dense molybdenum disilicide with a nano-organized microstructure was synthesized by mechanical activation, by producing nanostructured agglomerates of a 1:2 mixture of Mo and Si, followed by the synthesis/consolidation in one step using SPS technology. In order to synthesize a dense molybdenum disilicide with a perfectly controlled microstructure, an investigation of the influence of Spark Plasma Sintering processing parameters (temperature, heating rate, mechanical pressure and holding time) on the chemical composition and the microstructure characteristics has been performed. The present work shows also that the so-obtained materials present better oxidation resistance in compari…

010302 applied physicsMaterials scienceScanning electron microscopeMechanical EngineeringMetallurgyMetals and AlloysMolybdenum disilicideSpark plasma sinteringSintering02 engineering and technology[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyMicrostructure01 natural scienceschemistry.chemical_compoundchemistryMechanics of MaterialsAgglomerate[ CHIM.MATE ] Chemical Sciences/Material chemistry0103 physical sciencesOxidizing agentVickers hardness testMaterials Chemistry0210 nano-technologyComputingMilieux_MISCELLANEOUS
researchProduct

Sintering of copper nanopowders under hydrogen: an in situ X-ray diffraction analysis.

2003

Abstract The reduction by hydrogen gas of the cuprite layer on copper nanocrystals and the subsequent sintering of the nano-particles were studied using in-situ X-ray diffraction and dilatometry. Spherical nanocrystals produced by evaporation and condensation have an average size of 35 nm, exhibiting a large surface curvature. Each nanoparticle is coated with a 3.5 nm layer of Cu 2 O, which is rough and disordered, as revealed by high-resolution electron microscopy. Reduction by hydrogen of this curved cuprite layer occurs at 363 K, which is ≈65 K lower than is observed on a layer supported by micrometer-sized or bulk copper with a flat surface. The reduction process and its effect on the s…

Copper oxideCupriteMaterials scienceHydrogenAnalytical chemistrySinteringMineralogyNanoparticlechemistry.chemical_element02 engineering and technology[SPI.MAT] Engineering Sciences [physics]/Materials01 natural sciences[SPI.MAT]Engineering Sciences [physics]/Materialschemistry.chemical_compound0103 physical sciencesGeneral Materials ScienceComputingMilieux_MISCELLANEOUS010302 applied physicsMechanical Engineering021001 nanoscience & nanotechnologyCondensed Matter PhysicsEvaporation (deposition)CopperchemistryMechanics of Materialsvisual_artX-ray crystallographyvisual_art.visual_art_medium0210 nano-technology
researchProduct

Continuous hydrothermal synthesis of inorganic nanopowders in supercritical water: towards a better control of the process

2009

International audience; A hydrothermal synthesis process working in supercritical conditions (T > 374 °C, P > 22 MPa) and in a continuous mode has been developed for inorganic nanopowder synthesis. This paper presents a review of the past 5 years of research conducted on this process. Numerous materials (oxides: ZrO2, TiO2, Fe2O3..., ferrites: Fe2CoO4..., or BaZrO3) were obtained with specific features. Some technical issues have been solved, that are presented here. Heat transfer was studied, leading to a more efficient design of the reactor. Future developments have been examined through process engineering, in which our group is engaged, especially through CFD modelling.

EngineeringProcess (engineering)General Chemical EngineeringNanoparticleMechanical engineering02 engineering and technology7. Clean energy020401 chemical engineeringHeat transferHydrothermal synthesis[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering0204 chemical engineeringProcess engineeringComputingMilieux_MISCELLANEOUSSupercritical waterbusiness.industry[ SPI.GPROC ] Engineering Sciences [physics]/Chemical and Process EngineeringContinuous mode[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologySupercritical fluidContinuous synthesis process[ CHIM.MATE ] Chemical Sciences/Material chemistryScientific methodHeat transferNanoparticles0210 nano-technologybusinessCFD
researchProduct

Sources d'hétérogénéité d'un assemblage par soudage par diffusion homogène de tôles en acier austénitique inoxydable

2013

Ce document presente un apercu des heterogeneites de microstructure aux interfaces qui peuvent etre rencontrees lors du soudage par diffusion homogene d'un assemblage de toles. Un assemblage homogene a finalement ete realise avec l'obtention de proprietes mecaniques tres satisfaisantes. Pour finir, une piste de reflexion est apportee afin d'ameliorer les proprietes des assemblages.

HumanitiesMATEC Web of Conferences
researchProduct

Electrochemical behavior of nanocrystalline iron aluminide obtained by mechanically activated field activated pressure assisted synthesis

2004

Abstract The corrosion behavior of nanocrystalline iron aluminide obtained by mechanically activated field—activated pressure—assisted synthesis was investigated in sulphuric acid media using potentiodynamic curves. The effect of microstructure on the electrochemical corrosion resistance was investigated by examining samples which were heat treated to effect a change in crystallite size and microdistorsion.

Materials scienceMechanical EngineeringMetallurgyIntermetallicCondensed Matter PhysicsElectrochemistryMicrostructureNanocrystalline materialCorrosionChemical engineeringMechanics of Materialsvisual_artAluminium alloyvisual_art.visual_art_mediumGeneral Materials ScienceCrystalliteAluminideMaterials Science and Engineering: A
researchProduct

Spark Plasma Sintering tool design for preparing alumina-based Functionally Graded Materials

2016

Abstract A way to produce Functionally Graded Materials (FGM) is by means of Spark Plasma Sintering (SPS) and specifically designated tools. These new tools permit a current density modulation and therefore a temperature variation along the z-axis. The key feature relies on a varying die section. FEM modelling has given the suitable range of die dimensions between the top and the bottom to obtain a given temperature gradient (around 300 °C) out of roughly a 15 mm height. Experiments conducted in different configurations (with or without samples) and the measurement of the associated thermal gradient led to improvements of the mould (in particular the introduction of a counter-piston). By th…

Materials sciencebusiness.product_category020502 materialsProcess Chemistry and TechnologySpark plasma sintering02 engineering and technology021001 nanoscience & nanotechnologyMicrostructureFunctionally graded materialFinite element methodSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsTemperature gradient0205 materials engineeringMaterials ChemistryCeramics and CompositesDie (manufacturing)Composite material0210 nano-technologyPorositybusinessCurrent densityCeramics International
researchProduct

Influence of Twinning Microstructure of Crystals with Low Tetragonality on a X-Ray Diffraction

2001

The intensity distributions of the X-rays scattered in the tetragonal single crystal, which represent a complex of the twin domains separated by the coherent parallel boundaries, are simulated. The calculations are performed by using the Monte Carlo method within the framework of a kinematical approach. The thickness distributions of the twin domains are defined according to the geometrical, Gaussian and log normal functions. ‘Critical’ effects of the X-ray scattering are found, namely there is transformation of the tetragonal doublet into singlet or multiplet. As demonstrated, each of characteristics of the tetragonal doublet profile depends on a few parameters of the twin microstructure o…

Fluid Flow and Transfer ProcessesMaterials sciencetetragonal crystalMaterials Science (miscellaneous)satelliteMetals and AlloystwinsCondensed Matter PhysicsMicrostructurelcsh:QC1-999diffuse scatteringSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceCrystallographyx-ray diffractionCondensed Matter::SuperconductivityX-ray crystallographyCondensed Matter::Strongly Correlated ElectronsCrystal twinninglcsh:PhysicsUspehi Fiziki Metallov
researchProduct

Bulk FeAl nanostructured materials obtained by spray forming and spark plasma sintering

2007

Abstract This paper examines the efficiency of two consolidation processing techniques high velocity oxy-fuel (HVOF) spray forming and spark plasma sintering (SPS) which allow to obtain bulk dense nanostructured materials. An oxide dispersion strengthened (ODS) Fe–40Al (at.%) based milled powder (with a nanostructure

NanostructureMaterials scienceMechanical EngineeringMetallurgyMetals and AlloysOxideSpark plasma sinteringFEALSpray formingMicrostructurechemistry.chemical_compoundchemistryMechanics of MaterialsPowder metallurgyMaterials ChemistryThermal sprayingJournal of Alloys and Compounds
researchProduct

Cation Distribution in Ferrites with Spinel Structure Measured by Anomalous Powder Diffraction

1998

CrystallographyMaterials scienceMechanics of MaterialsRietveld refinementMechanical EngineeringSpinelengineeringGeneral Materials ScienceCation distributionengineering.materialCondensed Matter PhysicsPowder diffractionMaterials Science Forum
researchProduct

Spark Plasma Sintering of Metallic Glasses

2019

Spark plasma sintering (SPS) of metallic glasses (MG) can be quite different from sintering crystalline metallic alloys. Indeed, MG behave differently with increasing temperature, as they encounter a glass transition and devitrification. Their shaping can thus be compared to what can be performed on thermoplastic polymers. SPS is a promising way to prepare bulk parts from amorphous powders, since it allows very fast heating and cooling rates. It gives an advantage to avoid or limit devitrification of the amorphous phase upon the thermal cycle. However, diffusion mechanisms, which generally control densification, are activated at temperatures that are not compatible with MG structural integr…

010302 applied physics[CHIM.MATE] Chemical Sciences/Material chemistryAmorphous metalMaterials scienceDiffusionComposite numberSinteringSpark plasma sintering02 engineering and technology[CHIM.MATE]Chemical Sciences/Material chemistry01 natural sciencesAmorphous solid020303 mechanical engineering & transportsDevitrification0203 mechanical engineering0103 physical sciencesComposite materialGlass transitionComputingMilieux_MISCELLANEOUS
researchProduct

Utilisation de la diffraction résonnante pour déterminer la distribution cationique d'un ferrite de titane nanométrique

1998

Les proprietes magnetiques des ferrites de structure spinelle dependent, entre autres, de la distribution cationique dans la maille. La connaissance de cette repartition a pu etre obtenue dans le cas d'un ferrite substitue au titane en utilisant la diffraction anomale de poudre couplee avec un affinement structural de type Rietveld, methode qui est le fruit des dernieres avancees effectuees autour du rayonnement synchrotron.

Materials scienceGeneral Physics and AstronomyIon distributionPhysical chemistryLe Journal de Physique IV
researchProduct

Simultaneous Synthesis and Consolidation of Nanostructured MoSi2

2002

A new process combining electric field activation and the imposition of pressure from mechanically activated powder mixtures is demonstrated as a means to simultaneously synthesize and densify nano-MoSi2 in one step. Nanophase reactants (Mo + 2Si) produced by mechanical activation are reacted by field activation with the simultaneous application of a uniaxial pressure. Mo + 2Si powders were comilled in a specially designed planetary mill to obtain nanometric reactants but to avoid formation of any product phases. These were then subjected to high alternating currents (1600 A) and pressures of 106 MPa. Under these conditions, a reaction is initiated and completed within a short period of tim…

010302 applied physicsDiffractionMaterials scienceConsolidation (soil)Mechanical EngineeringOne-Step02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsUniaxial pressure01 natural sciencesCrystallographyChemical engineeringMechanics of MaterialsElectric field0103 physical sciencesRelative densityGeneral Materials ScienceCrystallite0210 nano-technologyJournal of Materials Research
researchProduct

Experimental investigation of the grain size dependence of the hydrolysis of LiH powder

2011

International audience; The hydrolysis reaction of LiH powder has been investigated in order to determine the products, rates and mechanisms of this reaction and the influence of the experimental parameters. Raman spectroscopy, X-ray diffraction and gravimetric analysis were used. It was shown that the product of hydrolysis was the hydroxide of lithium (LiOH) for low partial pressure of water (≈50 Pa) and LiOH*H2O for a higher partial pressure of water (>2000 Pa). Moreover, data obtained using gravimetric analysis inside a glove box containing a controlled partial pressure of water (500 ppmv/50 Pa at 25 °C) were used to determine the rate of the reaction versus particle size. The experiment…

General Chemical Engineering[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Analytical chemistrychemistry.chemical_element02 engineering and technologyPartial pressure010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesChemical reaction0104 chemical scienceschemistry.chemical_compoundHydrolysischemistryLithium hydride[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]HydroxideGravimetric analysisLithiumParticle size0210 nano-technology
researchProduct

Sintering of lead phospho-vanadate by spark plasma sintering

2009

International audience

[CHIM.MATE] Chemical Sciences/Material chemistry[ CHIM.MATE ] Chemical Sciences/Material chemistry[CHIM.MATE]Chemical Sciences/Material chemistryComputingMilieux_MISCELLANEOUS
researchProduct

Enhancement of self-sustaining reaction by mechanical activation: case of an FeSi system

1999

Mechanical high energy ball milling of an Fe2Si elemental powders mixture was used to activate a self sustaining combustion reaction or so-called self-propagating high-temperature synthesis (SHS) to form iron disilicide, a reaction for which the thermodynamic criterion is not favorable. A complete characterization of the milled powders before reaction was performed with energy dispersive X-ray spectrometry, specific surface measurements and X-ray diffraction profile analysis. Thermal and structural information describing the combustion front initiated by heating up a sample to 400°C in a Fe‐Si system is communicated. In order to isolate the phases involved in the gasless reaction, a time-re…

DiffractionMaterials scienceMechanical EngineeringSelf-propagating high-temperature synthesisAnalytical chemistryCondensed Matter PhysicsMicrostructureCombustionCharacterization (materials science)chemistry.chemical_compoundchemistryMechanics of MaterialsSpecific surface areaSilicideGeneral Materials ScienceBall millMaterials Science and Engineering: A
researchProduct

Combustion synthesis of MoSi2 and MoSi2–Mo5Si3 composites: Multilayer modeling and control of the microstructure

2010

International audience; In this work, we present a multilayer modeling for the formation of molybdenum silicides in the exothermic reaction between Mo and Si under the influence of a temperature pulse. The heating rate can either be a well-controlled ramp or be generated spontaneously by the propagation of a combustion synthesis front. The model addresses the specific situation above the melting point of silicon and describes the solid–liquid reaction taking place in a single representative particle of molybdenum surrounded by the melt of silicon. We obtain a set of kinetic equations for the propagation of the interfaces between the different layers (Mo/Mo5Si3 and Mo5Si3/MoSi2) in the solid…

Exothermic reactionMaterials scienceSiliconSelf-propagating high-temperature synthesischemistry.chemical_element02 engineering and technologyCombustion01 natural sciences7. Clean energy[PHYS.PHYS.PHYS-CHEM-PH] Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Powder metallurgy0103 physical sciencesMolybdenum silicidesMaterials ChemistryComposite material010302 applied physicsMechanical EngineeringModelingMetals and Alloys021001 nanoscience & nanotechnologyMicrostructure[ PHYS.PHYS.PHYS-CHEM-PH ] Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]KineticsSolid–liquid reactionschemistryMechanics of MaterialsMolybdenumMelting pointParticle[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]0210 nano-technologySelf-propagating high-temperature synthesisJournal of Alloys and Compounds
researchProduct

Production of dense nanostructured materials using FAPAS and SPS techniques

2011

International audience

010302 applied physics[CHIM.MATE] Chemical Sciences/Material chemistryMaterials scienceNanostructured materialsMetallurgySpark plasma sintering[CHIM.MATE]Chemical Sciences/Material chemistry02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesGrain size[ CHIM.MATE ] Chemical Sciences/Material chemistry0103 physical sciences0210 nano-technologyComputingMilieux_MISCELLANEOUS
researchProduct

Mechanically Activated SHS Reaction in the Fe-Al System: In Situ Time Resolved Diffraction Using Synchrotron Radiation

1998

The Mechanical Activation Self propagating High temperature Synthesis (M.A.S.H.S.) processing is a new way to produce nanocrystalline iron aluminide intermetallic compounds. This process is maily the combination of two steps ; in the one hand, a mechanical activation where the Fe - Al powder mixture was milled during a short time at given energy and frequency of shocks and in the other hand, a Self propagating High temperature Synthesis (S.H.S.) reaction, for which the exothermicity of the Fe + Al reaction is used. This fast propagated MASHS reaction has been in -situ investigated using the Time Resolved X - Ray Diffraction (TRXRD) using a X - ray synchrotron beam and an infrared thermograp…

DiffractionMaterials scienceMechanical EngineeringMetallurgyAnalytical chemistrySelf-propagating high-temperature synthesisIntermetallicSynchrotron radiationCondensed Matter PhysicsSynchrotronNanocrystalline materiallaw.inventionMechanics of MaterialslawPowder metallurgyGeneral Materials ScienceAluminideMaterials Science Forum
researchProduct

One-Step Synthesis and Consolidation of Nanophase Iron Aluminide

2001

The simultaneous synthesis and densification of nanophase iron aluminide is investigated. Elemental nanophase reactants produced by mechanical activation were reacted by field activation with the simultaneous application of uniaxial pressure. The process was demonstrated in this work by the synthesis of dense nanometric FeAl. Iron and aluminum powders were co-milled in a specially designed planetary mill to obtain nanometric reactants and to avoid formation of any product phases. These powders were then subjected to high AC currents (1250–1500 A) and pressures in the range of 70–106 MPa. Under these conditions, a reaction was initiated and completed within a short period of time (2.5–3.5 mi…

Materials scienceMetallurgyIntermetallicchemistry.chemical_elementOne-StepFEALChemical engineeringchemistryAluminiumMaterials ChemistryCeramics and CompositesRelative densityParticle sizeCrystalliteAluminideJournal of the American Ceramic Society
researchProduct

Synthesis of niobium aluminides using mechanically activated self-propagating high-temperature synthesis and mechanically activated annealing process

1999

The mechanically activated self-propagating high-temperature synthesis (MASHS) technique and the mechanically activated annealing process (M2AP) were used to produce NbAl3 intermetallic compound. The MASHS process results from the combination of two steps: first, a mechanical activation of the Nb 3Al powders mixture; second, a self-propagating high-temperature synthesis (SHS). The M2AP process also results from the combination of two steps: the first is the same; the second consists of the annealing of as-milled powders. Based on X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDXS), the as-milled powders, MASHS, and M2AP end-pr…

Materials scienceScanning electron microscopeAnnealing (metallurgy)Mechanical EngineeringMetallurgyEnergy-dispersive X-ray spectroscopySelf-propagating high-temperature synthesisIntermetallicCondensed Matter PhysicsMicrostructureChemical engineeringMechanics of MaterialsPowder metallurgyGeneral Materials ScienceBall mill
researchProduct

Influence of the pH on the ZnO nanoparticle growth in supercritical water: Experimental and simulation approaches

2014

Abstract In order to improve the knowledge on the nucleation and the growth mechanisms of metal oxides nanoparticles produced in supercritical water domain, ZnO was used as a “model” material. A continuous process of hydrothermal synthesis was employed to synthesize ZnO nanopowders ( T  = 410 °C and P  = 305 bar) from Zn(NO 3 ) 2 and KOH solutions with different values of [KOH]/[Zn(II)] ratio from 0 to 8 in order to investigate the pH effect on the growth of ZnO nanocrystallite in terms of size and morphology. The samples were characterized by X-Ray Diffraction and Transmission Electronic Microscopy. ZnO crystal was considered as a cylindrical crystallite with a diameter D and height H . Es…

DiffractionMaterials scienceGeneral Chemical EngineeringNucleationNanoparticleNanotechnologyCondensed Matter PhysicsSupercritical fluidCrystalMetalChemical engineeringvisual_artvisual_art.visual_art_mediumHydrothermal synthesisCrystallitePhysical and Theoretical ChemistryThe Journal of Supercritical Fluids
researchProduct

Correlation between ball milling conditions and planar effects on Cu-nanostructured powders

2002

It is most often proposed that the process of ball milling introduces a variety of defects (vacancies, dislocations, grain boundaries, stacking faults,...) which raise the free energy of the system making it possible to produce metastable phases. But there are very few investigations that deal with the characterization and quantification of the defects produced in milled powders. XRD is really a valuable technique for a characterization in terms of size and morphology of crystallites and imperfections. In this paper, a new line profile analysis method is proposed in order to take into account the dependence of the crystallite size, of the residual strains as well as of the planar defects, o…

Condensed Matter::Materials ScienceMaterials scienceNanostructureStackingGeneral Physics and AstronomyNanoparticleMineralogyGrain boundaryCrystalliteComposite materialMicrostructureBall millCharacterization (materials science)Journal de Physique IV (Proceedings)
researchProduct

Advanced Usage of SPS Technology for Producing Innovative Materials

2014

Materials scienceMetallurgySpark plasma sinteringComposite material
researchProduct

MoSi2 Formation Mechanisms during a Spark Plasma Synthesis from Mechanically Activated Powder Mixture

2010

Materials scienceSpark (mathematics)MetallurgyPlasmaMechanism (sociology)Powder mixture
researchProduct

Mechanical Activation as a New Method for SHS

2006

The use of mechanical activation (the elemental powder mixture is milled for a short time at given frequency and impact energy) as a precursor to self-propagating high-temperature synthesis (SHS) results in the formation of nanostructured porous materials. The mechanical activation step was found necessary (i) to modify the thermal parameters of the combustion front (i.e. combustion front velocity, thermal heating rate…) in the cases of Mo-Si, Fe-Al, Ni-Si (ii) to initiate a combustion front in the case of systems having a low exothermicity. Nevertheless, the control of the mechanically activated mixture characteristics and, the understanding of the mechanical activation role on the SHS par…

Materials scienceNanostructured materialsThermalMetallurgyImpact energyIntermetallicMicrostructurePorous mediumPowder mixtureCombustion frontAdvances in Science and Technology
researchProduct

Diffraction anomale et composition cationique d'une titanomagnétite nanométrique

2000

Les ferrites substitues au titane constituent des materiaux interessants pour aller vers la comprehension des reactions d'oxydo-reduction qui ont lieu dans ces composes de structure spinelle. Ces composes synthetises par chimie douce on ete etudies in-situ par diffraction anomale dans diverses conditions. Dans le cas particulier du compose Fe 2.5 Ti 0.5 O 4 , les premiers resultats montrent que cette methode de synthese ne permet pas d'elaborer directement le ferrite avec la composition esperee. En effet l'analyse structurale met en evidence un taux de titane bien inferieur a 0.5 alors que d'autres techniques,(analyse ICP, methode de Poix), confirment ce taux de substitution.

Materials scienceNeutron diffractionChemical preparationGeneral Physics and AstronomyPhysical chemistryIon distributionCrystal structureLe Journal de Physique IV
researchProduct

Powder metallurgy processing and deformation characteristics of bulk multimodal nickel

2014

cited By 7; International audience; Spark plasma sintering was used to process bulk nickel samples from a blend of three powder types. The resulting multimodal microstructure was made of coarse (average size ∼ 135 μm) spherical microcrystalline entities (the core) surrounded by a fine-grained matrix (average grain size ∼ 1.5 μm) or a thick rim (the shell) distinguishable from the matrix. Tensile tests revealed yield strength of ∼ 470 MPa that was accompanied by limited ductility (∼ 2.8% plastic strain). Microstructure observation after testing showed debonding at interfaces between the matrix and the coarse entities, but in many instances, shallow dimples within the rim were observed indica…

Materials sciencePlasticityEBSDFlow stressDeformation CharacteristicsNickelPowder metallurgyPowder metallurgyGeneral Materials ScienceIn-situ TEMMicrostructureMicrostructure observationCrack tips[PHYS]Physics [physics][ PHYS ] Physics [physics]Deformation mechanismMechanical EngineeringMetallurgySpark plasma sinteringNickel powder metallurgyCondensed Matter PhysicsMicrostructureGrain sizeDeformationIn-situ transmission electron microscopiesDeformation mechanismMechanics of MaterialsMulti-modalGrain boundariesGrain boundaryPowder metallurgy processingDeformation (engineering)DislocationTensile testingTransmission electron microscopy
researchProduct

Microstructure-oxidation resistance relationship in Ti3AlC2 MAX phase

2020

International audience; Spark Plasma Sintering and Hot Isostatic Pressing were used to synthesize coarse-grained and fine-grained Ti3AlC2 specimens. Moreover, Spark Plasma Sintering processing parameters were modified in order to vary the TiC, Al2O3 and TixAly impurity and the porosity contents in the fine-grained samples. The influence of the Ti3AlC2 microstructure on the oxidation resistance was assesed. It is demonstrated that the grain size can drastically modify the oxidation resistance. The higher density of grain boundaries, in fine-grained specimens, increases the number of Al diffusion paths and leads to the formation of a protective alumina scale. In coarse-grained sample, Al diff…

Materials science[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]OxideSpark plasma sinteringSPS02 engineering and technology010402 general chemistry01 natural sciences[SPI.AUTO]Engineering Sciences [physics]/Automaticchemistry.chemical_compound[SPI]Engineering Sciences [physics][PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Powder metallurgyHot isostatic pressingPowder metallurgyOxidationMaterials Chemistry[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph][PHYS.MECA.BIOM]Physics [physics]/Mechanics [physics]/Biomechanics [physics.med-ph]Composite materialPorosityMicrostructureComputingMilieux_MISCELLANEOUS[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph][PHYS.MECA.VIBR]Physics [physics]/Mechanics [physics]/Vibrations [physics.class-ph][SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environmentMechanical Engineering[SPI.NRJ]Engineering Sciences [physics]/Electric powerMetals and Alloys[CHIM.MATE]Chemical Sciences/Material chemistry[PHYS.MECA.MSMECA]Physics [physics]/Mechanics [physics]/Materials and structures in mechanics [physics.class-ph]021001 nanoscience & nanotechnologyMicrostructureGrain sizeGrain size[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph]0104 chemical sciences[SPI.ELEC]Engineering Sciences [physics]/Electromagnetism[CHIM.POLY]Chemical Sciences/PolymerschemistryMechanics of Materials[PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph]MAX phaseGrain boundary0210 nano-technology
researchProduct

The mechanically activated combustion reaction in the Fe–Si system: in situ time-resolved synchrotron investigations

2002

Mechanical high-energy ball milling of Fe+2Si elemental powder mixtures was used to activate self sustaining combustion reaction in the case of iron disilicide synthesis. The reaction path as well as the influence of the microstructural parameters on phase transformation have been investigated in detail. Time-resolved X-ray diffraction (TRXRD) using the fast recording kinetics offered by the synchrotron radiation was coupled to an infrared camera in order to study the internal structure of the combustion wave. The crystallite size and the amount of mechanically induced phases play an important role during the combustion; the reaction path and the end product composition mainly depend on the…

DiffractionMaterials scienceInfraredMechanical EngineeringMetals and AlloysSynchrotron radiationGeneral ChemistryCombustionSynchrotronlaw.inventionCrystallographyChemical engineeringMechanics of MaterialslawPhase (matter)Materials ChemistryCrystalliteBall millIntermetallics
researchProduct

Synthesis of bulk FeAl nanostructured materials by HVOF spray forming and Spark Plasma Sintering

2006

Abstract This paper examines the efficiency of two consolidation processing techniques: High Velocity Oxy-Fuel (HVOF) spray forming and Spark Plasma Sintering (SPS) to obtain bulk nanostructured materials from an Y 2 O 3 reinforced Fe–40Al (at.%) milled powder. The microstructures of the sintered end-products were characterized by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) in order to gain new insights in their microstructure formation mechanisms. HVOF spray forming is more effective to retain fine nanograins, in particular within retained unmelted powder particles. The drawbacks of this technique are that it inevitably leads to a high fraction of porosity…

Materials scienceScanning electron microscopeMechanical EngineeringMetallurgyMetals and AlloysSpark plasma sinteringFEALGeneral ChemistryMicrostructureSpray formingMechanics of MaterialsTransmission electron microscopyMaterials ChemistryThermal sprayingPorosityIntermetallics
researchProduct

Caractérisation de poudres de zircone synthétisées par voie hydrothermale

1998

La synthese hydrothermale permet la realisation de poudres fines cristallisees et desagglomerees Ces qualites sont appropriees a l'elaboration de composites fins oxyde/oxyde par synthese simultanee des deux phases. Nous avons developpe ce protocole pour la realisation de nanocomposites ahrmine/zircone (Q). Nous presentons ici plus particulierement le travail effectue sur la zircone, Les conditions de traitement hydrothermal et d'un traitement thermique modere supplementaire sont analysees en relation avec les caracteristiques des poudres synthetisees. Differentes techniques complementaires sont utilisees pour ces poudres de zircone: diffraction des rayons X (% de la phase quadratique, taill…

Materials scienceFine powderZirconium oxideGeneral Physics and AstronomyHydrothermal treatmentNuclear chemistryLe Journal de Physique IV
researchProduct

CFD simulation of ZnO nanoparticle precipitation in a supercritical water synthesis reactor

2012

International audience; Continuous hydrothermal flow synthesis process has shown great advantages concerning the control of particle size and morphology through the optimization of supercritical water processing parameters. In particular, micromixing is a key issue of the process for controlling the nucleation mechanism. A Computational Fluid Dynamics (CFD) model is suggested for nanoparticle size determination using a population balance approach. Models for reaction kinetics, thermodynamics, nucleation and growth are presented. The effects of base concentration and hydrodynamics are investigated. Results show that the CFD may be valuable simulation tool for controlling the size and the sha…

CONTINUOUS HYDROTHERMAL SYNTHESISMaterials scienceFLOWGeneral Chemical EngineeringPopulationNucleationNanoparticleNanotechnologyCrystal growth02 engineering and technologyComputational fluid dynamicsVALIDATIONNANOPOWDERSMETAL-OXIDE NANOPARTICLES020401 chemical engineeringPARTICLE FORMATION0204 chemical engineeringPhysical and Theoretical Chemistryeducationeducation.field_of_studybusiness.industryFLUID-DYNAMICSAGGREGATION021001 nanoscience & nanotechnologyCondensed Matter PhysicsSupercritical fluidMicromixingChemical engineeringPOPULATION BALANCEParticle sizeCRYSTALLIZATION0210 nano-technologybusinessThe Journal of Supercritical Fluids
researchProduct

Hydrothermal growth of ZnO nanostructures in supercritical domain: Effect of the metal salt concentration (Zn(NO3)2) in alkali medium (KOH)

2015

Abstract The metal salt concentration effect on the size and morphology of ZnO NPs was highlighted through its synthesis thanks to a continuous one-step method at 401 ± 15 °C and 306 ± 8 bar. Experiments were performed from Zn(NO3)2 and KOH as reactants in concentration ranges of 10–480 mM and 40–1920 mM, respectively. A constant [KOH]/[Zn(NO3)2] ratio of 4 was fixed in order to maintain a constant pH value between 12.5 and 13.0. The as-prepared NPs were characterized by X-ray diffraction and (high-resolution) transmission electron microscopy. Based on Louer's method, ZnO crystal exhibiting a hexagonal structure was considered as cylinder with a diameter D and a height H. The D/H parameter …

Materials scienceGeneral Chemical EngineeringAnalytical chemistryConcentration effectMineralogyCondensed Matter PhysicsAlkali metalHydrothermal circulationSupercritical fluidCrystalMetalTransmission electron microscopyvisual_artvisual_art.visual_art_mediumCrystallitePhysical and Theoretical ChemistryThe Journal of Supercritical Fluids
researchProduct

Mechanical, thermal and electrical properties of nanostructured CNTs/SiC composites

2018

International audience; Dense SiC-based nanostructured composites reinforced by well-distributed carbon nanotubes (CNTs) were elaborated for the first time by spark plasma sintering (SPS) without sintering additive. Microstructures of materials containing different amounts of CNTs – up to 8.0 vol% – were correlated with their mechanical, electrical and thermal properties. A continuous decrease of the SiC grain size was observed when the amount of CNT was increased, while the evolution of density showed a different behavior that could be explained by the particular combination of SPS technique with the electrical resistivity evolution of the green bodies. Optimal effect of CNTs addition on h…

ToughnessMaterials scienceSpark plasma sinteringchemistry.chemical_elementSintering02 engineering and technologyCarbon nanotube01 natural scienceslaw.inventionThermal conductivitylawElectrical resistivity and conductivity0103 physical sciencesMaterials ChemistryComposite material010302 applied physicsProcess Chemistry and Technology[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyMicrostructureSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialschemistryCeramics and Composites0210 nano-technologyCarbon
researchProduct

Enhancement of self-sustaining reaction Cu3Si phase formation starting from mechanically activated powders

2000

Mechanical high-energy ball milling of an 3Cu Si elemental powders mixture was used to activate a self-sustaining combustion reaction or so-called self-sustaining high-temperature synthesis (SHS) to form the copper silicide phase, a reaction for which the thermodynamic criterion proposed by Munir for self-propagation reaction is not favorable. A complete characterization of the end-products was performed with X-ray diffraction analysis and scanning electron microscopy. Thermal and structural information describing the combustion front initiated by heating up a sample to 180°C in a Cu:Si system is communicated. This paper clearly shows that the mechanically activated self-sustaining high-tem…

Materials scienceCopper silicideScanning electron microscopeMechanical EngineeringMetallurgySelf-propagating high-temperature synthesisCondensed Matter PhysicsCombustionchemistry.chemical_compoundChemical engineeringchemistryMechanics of MaterialsPhase (matter)General Materials ScienceReactivity (chemistry)CrystalliteBall millMaterials Science and Engineering: A
researchProduct

Peculiarities of X-Ray Diffraction in Crystals with Diffuse Boundaries of Twin on System {011}, <011>

2000

CrystallographyMaterials scienceDiffuse scatteringMechanics of MaterialsMechanical EngineeringX-ray crystallographyGeneral Materials ScienceCondensed Matter PhysicsMaterials Science Forum
researchProduct

Investigation of mechanically activated field-activated pressure-assisted synthesis processing parameters for producing dense nanostructured FeAl

2003

The parameters of the mechanically activated field-activated pressure-assisted synthesis (MAFAPAS) process, which were recently developed and patented for producing dense nanostructured materials, were studied in the case of the B2-FeAl intermetallic. Based on x-ray diffraction (XRD) experiments, residual stresses XRD analysis, relative density measurement, and secondary-electron microscopic observations, the optimal synthesis conditions (time, current intensity, and pressure) were studied. Fe + Al powders were comilled in a specially designed planetary mill to obtain a mixture of reactants at the nanoscale without the formation of any product. The milled mixtures were then subjected to a h…

DiffractionMaterials scienceMechanical EngineeringMetallurgyIntermetallicFEALCondensed Matter PhysicsMicrostructureChemical engineeringMechanics of MaterialsResidual stressRelative densityGeneral Materials ScienceCurrent densityIntensity (heat transfer)Journal of Materials Research
researchProduct

Mechanical activation conditions of the Fe2O3 and V2O3 mixture powders in order to obtain a nanometric vanadium spinel ferrite

1999

Abstract Co-milling of iron and vanadium oxides allows to obtain an intimate oxides mixture at a nanoscale, similar to a coprecipitate elaborated by soft chemistry. Reduction of such a mixture in the same temperature and oxygen partial pressure conditions (500°C and 10−25 Pa) as the soft chemistry products leads to a nanometric vanadium ferrite with the only spinel phase. The characterization of the powders is achieved by X-ray diffraction (XRD), scanning electron microscopy, infrared (IR) spectrometry, thermogravimetry and calorimetry. Homogeneity of grain size and chemical composition is reached if the initial oxides have similar grain size.

Materials scienceGeneral Chemical EngineeringSpinelMineralogyVanadiumchemistry.chemical_elementPartial pressureengineering.materialGrain sizeSoft chemistryThermogravimetrychemistryChemical engineeringengineeringFerrite (magnet)Chemical compositionPowder Technology
researchProduct

Développements récents de l'étude en temps réel par diffraction des rayons X couplée à une thermographie infrarouge : application au suivi de la réac…

1998

La formation au cours d'une reaction de combustion autoentretenue et mecaniquement activee (MASHS) d'intermetalliques nanometrique, tels que les composes FeAl et MoSi 2 , a pu etre observee in-situ et en temps reel en couplant la diffraction des rayons X, produit par rayonnement synchrotron, et une thermographie infrarouge. La mise en oeuvre d'une telle experience est indispensable en raison de la vitesse importante (10 mm/s) de propagation du front de combustion. Des developpements recents realises au niveau des systemes de detections permettent d'obtenir des temps d'acquisition tres courts (quelques dizaines de millisecondes) et de reveler des etapes intermediaires au cours de la transfor…

PhysicsInvestigation methodsGeneral Physics and AstronomyPhysical chemistryLe Journal de Physique IV
researchProduct

Characteristics of LiFePO4 obtained through a one step continuous hydrothermal synthesis process working in supercritical water

2009

International audience; The olivine-like material LiFePO4 was prepared via a continuous hydrothermal synthesis process working from subcritical to supercritical water conditions. The influence of some processing parameters–temperature and reaction time–was investigated in terms of material purity, grain size and morphology. Supercritical conditions were found to be attractive to synthesize in one step a well-crystallized material without impurities. The primary particles size was in the nanometric range. They showed a natural tendency to form micron size agglomerates, which were supposed to be the cause of the limited capacity, as demonstrated through a cross study using laser particle size…

Materials scienceMineralogyOne-Step02 engineering and technology010402 general chemistry01 natural sciencesLiFePO4ImpurityHydrothermal synthesisGeneral Materials ScienceSupercritical water[CHIM.MATE]Chemical Sciences/Material chemistryGeneral ChemistryParticle sizeContinuous hydrothermal synthesis021001 nanoscience & nanotechnologyCondensed Matter PhysicsGrain sizeSupercritical fluid0104 chemical sciencesChemical engineeringAgglomerate[ CHIM.MATE ] Chemical Sciences/Material chemistryParticle-size distributionParticle size0210 nano-technology
researchProduct

Microstructural study of titanium carbonitride elaborated by combustion synthesis

2007

Abstract The self-propagating high-temperature synthesis (S.H.S.) process, which is promising for the fabrication of ceramic materials, was chosen to elaborate titanium carbonitride materials. The influence of parameters such as nitrogen gas pressure and carbon ratio on the microstructure was studied. A single phase product of Ti(C,N) is obtained for a carbon ratio under 15 at.% and a nitrogen pressure of 36 MPa. The increase of the carbon ratio corresponds to a decrease of the maximum temperature reached during the synthesis. Time resolved X-ray diffraction measurements (TRXRD) with the synchrotron radiation were used to determine the reaction mechanisms. We could observe that the synthesi…

Reaction mechanismMaterials scienceSelf-propagating high-temperature synthesischemistry.chemical_elementMineralogy02 engineering and technologyCombustion01 natural sciences7. Clean energychemistry.chemical_compoundPhase (matter)0103 physical sciencesMaterials ChemistryComputingMilieux_MISCELLANEOUS010302 applied physicsProcess Chemistry and Technology[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyMicrostructureTitanium nitrideSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialschemistryChemical engineering[ CHIM.MATE ] Chemical Sciences/Material chemistryX-ray crystallographyCeramics and Composites0210 nano-technologyCarbon
researchProduct

Investigation of the SHS mechanisms of titanium nitride by in situ time-resolved diffraction and infrared thermography

2007

Abstract The self-propagating high-temperature synthesis (SHS) or combustion synthesis is a promising process to produce advanced ceramics due to the high purity of the elaborated materials and the very short synthesis time. Titanium nitride has been synthesised from pressed titanium powder and a nitrogen gas flow under a 0.1 MPa pressure. The influence of the addition of a TiN diluent was investigated. For the first time, SHS reaction mechanisms were determined from in situ time-resolved X-ray diffraction (TRXRD) experiments using the synchrotron radiation. These experiments were coupled with infrared thermography to study the propagation of the combustion reaction. It appeared that the in…

[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Self-propagating high-temperature synthesischemistry.chemical_elementMineralogy02 engineering and technologyNitrideCombustion01 natural sciences7. Clean energyChemical reactionchemistry.chemical_compound0103 physical sciencesMaterials Chemistry010302 applied physicsMechanical EngineeringMetals and Alloys021001 nanoscience & nanotechnologyTitanium nitrideTitanium powderchemistryChemical engineeringMechanics of Materials[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]0210 nano-technologyTinTitaniumJournal of Alloys and Compounds
researchProduct

Original Supercritical Water Device for Continuous Production of Nanopowders

2011

Well-crystallized ZnO, ZrO2, TiO2, CeO2, Y2O3 and La2O3 nanoparticles are synthesized under supercritical water conditions (T > 647 K and P > 22.1 MPa) using a home-made continuous process. At room temperature, metallic salts with or without aqueous hydroxide solution (KOH or NaOH) are pressurized to 25–30 MPa. Then, the reactant(s) is/are rapidly heated to 673–773 K by mixing with the supercritical water in a patented reactor. Residence time is in the range from 2 to 8 s. XRD, TEM and surface area analyses highlight the production of pure and well-crystallized nanoparticles with a uniform size distribution.

Aqueous solutionMaterials scienceMetallurgyMixing (process engineering)NanoparticleCondensed Matter PhysicsResidence time (fluid dynamics)Supercritical fluidContinuous productionMetalchemistry.chemical_compoundchemistryChemical engineeringvisual_artvisual_art.visual_art_mediumHydroxideGeneral Materials ScienceAdvanced Engineering Materials
researchProduct

Role of the Microstructure on the High Temperature Oxidation Properties of the Intermetallic Compound NbAl<sub>3</sub>

2001

The influence of the NbAl 3 microstructure on its oxidation mechanism was investigated in air under atmospheric pressure over the temperature range 500-1080°C. Different processing techniques as induction melting and mechanically-activated annealing processes (M2AP) were used to produce the intermetallic compound NbAl 3 . A protective external alumina scale grew only on Al-enriched NbAl 3 between 700 and 1080°C. Stoichiometric NbAl 3 exhibited the pesting phenomenon between 550-900°C, whereas a non protective lamellar oxide scale formed above 900°C. The proposed oxidation mechanism explains these observations which are in agreement with the oxidation study of powders with different crystall…

Materials scienceAnnealing (metallurgy)Mechanical EngineeringHigh-temperature corrosionMetallurgyIntermetallicOxideAtmospheric temperature rangeCondensed Matter PhysicsMicrostructurechemistry.chemical_compoundchemistryChemical engineeringMechanics of MaterialsGeneral Materials ScienceLamellar structureCrystalliteMaterials Science Forum
researchProduct

Deposition and characterization of cold sprayed nanocrystalline NiTi

2011

International audience; Binary 50Ni–50Ti mixture was prepared by mechanical alloying from elemental powders. After 48 h of milling, the nanocrystalline B2-NiTi powder was produced. Then, this as-milled powder was deposited by cold spraying in order to produce a target which can be used to create thin films by magnetron sputtering technique. The objective is to improve the electrical characterizations of the NiTi/SiO2/Si M.O.S structures. Themorphology evolution of the powder particles, the phase identification and the alloying evolution process as function of milling time were studied using scanning electron microscopy, X-ray diffraction and transmission electron microscopy. In addition, th…

Materials scienceScanning electron microscopeGeneral Chemical Engineering[ SPI.MAT ] Engineering Sciences [physics]/Materials02 engineering and technology01 natural sciences[SPI.MAT]Engineering Sciences [physics]/MaterialsSputtering0103 physical sciencesComposite material[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsComputingMilieux_MISCELLANEOUS010302 applied physics[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]Metallurgy[CHIM.MATE]Chemical Sciences/Material chemistrySputter deposition021001 nanoscience & nanotechnologyMicrostructureNanocrystalline materialGrain size[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryTransmission electron microscopy[ CHIM.MATE ] Chemical Sciences/Material chemistry[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistryCrystallite0210 nano-technology
researchProduct

Correlation between milling parameters and microstructure characteristics of nanocrystalline copper powder prepared via a high energy planetary ball …

2007

The microstructure evolution of Cu-nanostructured powders versus the ball milling conditions was investigated by whole peak profile powder pattern modeling method. This method allows defining in some approach the characteristics of as-milled Cu powder microstructure in terms of crystallite size, type and density of dislocations and twin faults density. It is shown that the change of microstructure characteristics of as-milled Cu powder versus the ball milling conditions (under constant time of the ball milling) depend on only some energy parameters of the milling, for example, average size of crystallite is uniquely defined by energy of the shock, whereas the portion of edge and screw compo…

Materials science02 engineering and technologyEdge (geometry)01 natural sciencesHigh Energy Physics::TheoryCondensed Matter::Materials ScienceCondensed Matter::SuperconductivityPowder metallurgy0103 physical sciencesMaterials ChemistryBall millComputingMilieux_MISCELLANEOUS010302 applied physicsMechanical EngineeringMetallurgyMetals and Alloys[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyMicrostructureNanocrystalline materialShock (mechanics)Mechanics of Materials[ CHIM.MATE ] Chemical Sciences/Material chemistryCrystalliteDislocation0210 nano-technologyJournal of Alloys and Compounds
researchProduct

Nanocrystalline FeAl Synthesis by MASHS with <i>In Situ</i> and Post Mortem Characterizations

1999

In situMaterials scienceMechanics of MaterialsMechanical EngineeringMetallurgyGeneral Materials ScienceFEALCondensed Matter PhysicsNanocrystalline materialMaterials Science Forum
researchProduct

From nanostructured powders to dense nanostructured materials: Mechanically activated powder metallurgy

2003

Materials scienceNanostructured materialsPowder metallurgyMetallurgyNanomaterials
researchProduct

Residual Stresses and Reactivity of Solids. Determination and Part Plaid in the Reaction Mechanisms

1996

Reaction mechanismRadiationResidual stressChemistryThermodynamicsGeneral Materials ScienceReactivity (chemistry)Condensed Matter PhysicsInternal stressDefect and Diffusion Forum
researchProduct

Thermal-electrical-mechanical simulation of the nickel densification by Spark Plasma Sintering. Comparison with experiments

2016

Abstract Spark Plasma Sintering is a non-conventional process of the powder metallurgy field which uses a high electrical current to rapidly produce fully dense materials. In the present paper, a thermal-electrical-mechanical model developed on ABAQUS Software is proposed to simulate the densification of a nickel disk. A compaction model, studied in [Wolff, C., Mercier, S., Couque, H., Molinari, A., 2012. Modeling of conventional hot compaction and spark plasma sintering based on modified micromechanical models of porous materials. Mechanics of Materials 49 (0), 72–91. URL http://www.sciencedirect.com/science/article/pii/S0167663611002195 ], has been used to reproduce the densification of t…

Materials scienceField (physics)CompactionSpark plasma sinteringchemistry.chemical_element02 engineering and technologyNickelPowder metallurgy[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph]ThermalForensic engineering[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringGeneral Materials ScienceComposite materialInstrumentationSpark Plasma SinteringMicromechanical models020502 materials021001 nanoscience & nanotechnologyStrength of materialsNickel0205 materials engineeringchemistryMechanics of Materials0210 nano-technologyPorous mediumSimulationMechanics of Materials
researchProduct

In situ study of the sintering of a lead phosphovanadate in an Environmental Scanning Electron Microscope

2011

cited By 3; International audience; The in situ sintering of a powder of Pb3(VO4) 1.6(PO4)0.4 composition was performed in an Environmental Scanning Electron Microscope. The electric current induced by the electron beam was found to reduce the effective temperature of sintering as well as to accelerate the kinetics of shrinkage of a cluster composed of sub-micrometric grains of material. The presence of the residual current flow in the cluster during observation for in situ experiments helps to reduce the apparent sintering temperatures from 50 to 150 °C compared to conventional heating conditions without current. © 2011 Elsevier B.V. All rights reserved.

In situIn-situ experimentsMaterials scienceKineticsCurrent[ SPI.MAT ] Engineering Sciences [physics]/MaterialsAnalytical chemistryElectron microscopesSintering02 engineering and technologyEnvironmental scanning electron microscopes01 natural sciences[SPI.MAT]Engineering Sciences [physics]/MaterialsEffective temperatureSintering0103 physical sciencesGeneral Materials ScienceElectron beam-induced depositionComposite materialEnvironmental scanning electron microscopeShrinkage010302 applied physicsConventional heatingIn-situElectron beamsGeneral ChemistryResidual currentSintering temperatures021001 nanoscience & nanotechnologyCondensed Matter PhysicsESEMIn-Situ StudyCathode rayElectric current0210 nano-technologyScanning electron microscopy
researchProduct

Assisted self-sustaining combustion reaction in the Fe–Si system: Mechanical and chemical activation

2007

Abstract This work presents original investigations carried out to improve the activated self-propagating high-temperature synthesis (SHS) process in the Fe–Si system: different ignition modes are tested (volume heating as opposed to a local ignition source), and the use of additive is considered in order to enhance the SHS type reactivity in the Fe–Si system. When 20 wt.% of KNO 3 is added to the reactive mixture, the fast (>20 mm s −1 ), stable and self-sustaining combustion reaction produces a very fine FeSi + α-FeSi 2 structure. Infrared thermography (IR) as well as post-mortem analysis (SEM, EDXS, XRD) was used to understand the mechanism behind the chemical activation process when KNO…

Reaction mechanismMaterials scienceAnalytical chemistrySelf-propagating high-temperature synthesis02 engineering and technologyCombustion01 natural sciences7. Clean energylaw.inventionchemistry.chemical_compoundlaw0103 physical sciencesSilicideGeneral Materials ScienceReactivity (chemistry)ComputingMilieux_MISCELLANEOUS010302 applied physicsMechanical Engineering[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsIgnition systemchemistryVolume (thermodynamics)Mechanics of Materials[ CHIM.MATE ] Chemical Sciences/Material chemistryX-ray crystallography0210 nano-technologyMaterials Science and Engineering: A
researchProduct

Utilisation de la technique de frittage flash pour la synthèse et la densification d'iodoapatites

2007

[CHIM.MATE] Chemical Sciences/Material chemistry[ CHIM.MATE ] Chemical Sciences/Material chemistry[CHIM.MATE]Chemical Sciences/Material chemistry
researchProduct

"Reactivity of Cu3Si of different genesis towards copper(I) chloride"

2000

Abstract A comparative study of the reactivity between copper(I) chloride and three types of Cu 3 Si obtained in a molten medium (Cu 3 Si-Ref) and from mechanical activation following an annealing process (Cu 3 Si-M2AP) or a self-propagating high-temperature synthesis (Cu 3 Si-MASHS) was performed by thermogravimetry under vacuum using non-isothermal and isothermal methods of kinetic measurement. It was established that for the three Cu 3 Si/CuCl systems, the acceleration and decay stages in the temperature range 145–215°C are very closely approximated by an equation of the Prout–Tompkins type where an autocatalytic process was proposed. The lower apparent activation energy obtained for the…

Annealing (metallurgy)Inorganic chemistry[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]chemistry.chemical_element02 engineering and technologyActivation energy010402 general chemistry01 natural sciencesChlorideIsothermal processchemistry.chemical_compoundmedicineCopper(I) chlorideReactivity (chemistry)Physical and Theoretical ChemistryInstrumentationChemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsCopper[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]0104 chemical sciencesThermogravimetry[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Physical chemistry0210 nano-technologymedicine.drug
researchProduct

In Situ Determination of the Residual Stress Field Induced by Air Oxidation, up to 1000 °C, in a 20% Cr 5% Al Ferritic Steel, by X-Ray Diffraction

1994

In situMaterials scienceField (physics)Mechanics of MaterialsResidual stressMechanical EngineeringMetallurgyX-ray crystallographyGeneral Materials ScienceCondensed Matter PhysicsMaterials Science Forum
researchProduct

Structure and composition heterogeneity of a FeAl alloy prepared by one-step synthesis and consolidation processing and their influence on grain size…

2006

Abstract This paper aims to characterize a bulk dense FeAl (47 at.%) alloy synthesized and consolidated by one-step current-activated pressure-assisted processing of nanocrystalline elemental powders. The end-product was analyzed using a combination of scanning (SEM) and transmission electron microscopies (TEM), electron back-scattering diffraction (EBSD) as well as electron probe microanalysis (EPMA). Special attention was paid to verify the grain size (32–89 nm) previously determined by X-ray diffraction peak profile analysis. It has been found that this material displays equiaxed grains (0.8–4 μm in size) and contains limited structural defects like subgrains and dislocations. The EPMA r…

Equiaxed crystalsField activationMaterials scienceAnalytical chemistry[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]02 engineering and technologyElectron microprobe01 natural sciences[SPI.MECA.MEMA] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph][PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph]Iron aluminidesMechanical activation[PHYS.MECA.MEMA] Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph]0103 physical sciences[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph]Materials Chemistry[CHIM.CRIS]Chemical Sciences/Cristallography[CHIM.CRIS] Chemical Sciences/CristallographyMicrostructure010302 applied physicsMechanical EngineeringMetallurgyMetals and AlloysFEAL[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyMicrostructureGrain sizeNanocrystalline material[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Grain sizeMechanics of MaterialsTransmission electron microscopy[ CHIM.MATE ] Chemical Sciences/Material chemistry[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]0210 nano-technologyElectron backscatter diffraction
researchProduct

Combustion wave structure during the MoSi2 synthesis by Mechanically-Activated Self-propagating High-temperature Synthesis (MASHS): In situ time-reso…

2006

Abstract In situ synchrotron time-resolved X-ray diffraction experiments coupled with an infrared imaging camera have been used to reveal the combustion wave structure during the production of MoSi2 by Mechanically Activated Self-propagating High-temperature Synthesis (MASHS). The fast combustion front exhibits a form described as an ‘equilibrium structure’ where the chemical reaction is the sole major driving force. In the MASHS process, oxide-free interfaces between Mo and Si nanocrystallites enhance the reaction Mo+2Si→MoSi2. Exhaustive time-resolved investigations show a possible solid-state process in the first second of the reaction within the combustion front. If preheating is added,…

[SPI.OTHER]Engineering Sciences [physics]/OtherDiffractionMaterials science[ SPI.OTHER ] Engineering Sciences [physics]/OtherSelf-propagating high-temperature synthesis[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]02 engineering and technologyCombustion7. Clean energy01 natural sciencesChemical reactionlaw.inventionmechanical allowing and millingReaction ratelaw0103 physical sciencesThermalMaterials Chemistryphase transformation (crystallographic aspects kinetics and mechanismsBall mill010302 applied physicsMechanical Engineeringreaction synthesisMetals and Alloys[CHIM.MATE]Chemical Sciences/Material chemistryGeneral Chemistry021001 nanoscience & nanotechnologyvarious[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]SynchrotronsilicidesCrystallographyChemical engineeringMechanics of Materials[ CHIM.MATE ] Chemical Sciences/Material chemistry[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]0210 nano-technology
researchProduct

Hydrothermal Synthesis of ZnO Crystals from Zn(OH)2 Metastable Phases at Room to Supercritical Conditions

2014

The originality of this work is to highlight the effect of temperature and pressure on the size and morphology of hydrothermal ZnO particles from ambient to supercritical conditions (T > 374 °C and P > 221 bar) using a unique continuous one-step process. Experiments were carried out from zinc nitrate (Zn(NO3)2) and potassium hydroxide (KOH) solutions in the ranges of 1–300 bar and 30–400 °C. The as-prepared particles of ZnO (flower, ellipsoid, and sphere) and e-Zn(OH)2 (polyhedral) sized from nano to micrometers were characterized by X-ray diffraction and electronic microscopy. The wulfingite phase (e-Zn(OH)2) was detected inside some powders especially at room temperature for higher pressu…

Potassium hydroxideMaterials scienceRietveld refinementAnalytical chemistryMineralogyGeneral ChemistryCondensed Matter PhysicsHydrothermal circulationSupercritical fluidchemistry.chemical_compoundchemistryZinc nitratePhase (matter)Hydrothermal synthesisGeneral Materials ScienceBar (unit)Crystal Growth & Design
researchProduct

Tin-based mesoporous silica for the conversion of CO2 into dimethyl carbonate.

2011

Sn-based SBA-15 was prepared by reacting di-n-butyldimethoxystannane with SBA-15 pretreated with trimethylchlorosilane (TMCS) to cap the external hydroxyl groups. Small-angle X-ray diffraction (SXRD), infrared spectroscopy (IR), nitrogen adsorption/desorption, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and inductively coupled plasma atomic emission (ICP-AES) measurements allow us to propose that the organotin species are located within the pore channels of the mesoporous host. This novel material catalyzes selectively the coupling of CO(2) with methanol to dimethyl carbonate (DMC). The reaction time-conversion dependence shows that a turnover number (TON) of 1…

Thermogravimetric analysisFormatesChemistryGeneral Chemical EngineeringMethanolInorganic chemistryInfrared spectroscopychemistry.chemical_elementMesoporous silicaCarbon DioxideSilicon DioxideCatalysisCatalysischemistry.chemical_compoundGeneral EnergyTinDesorptionEnvironmental ChemistryGeneral Materials ScienceDimethyl carbonateTinMesoporous materialPorosityChemSusChem
researchProduct

Effect of Microstructure on the High Temperature Oxidation and Pesting Behaviour of MoSi<sub>2</sub>

2004

Materials scienceMechanics of MaterialsMechanical EngineeringMetallurgyIntermetallicGeneral Materials ScienceCondensed Matter PhysicsMicrostructureMaterials Science Forum
researchProduct

New Ceramics for the Information Storage: Nanoparticles of Titanium Ferrites. Influence of Oxidation and Reduction Reactions upon the Coercivity

1997

Materials scienceMechanical EngineeringMetallurgySpinelNanoparticlechemistry.chemical_elementCoercivityengineering.materialSoft chemistrychemistryMechanics of Materialsvisual_artvisual_art.visual_art_mediumengineeringGeneral Materials ScienceCeramicMechanosynthesisMossbauer spectrometryTitaniumKey Engineering Materials
researchProduct

Spark plasma synthesis from mechanically activated powders: a versatile route for producing dense nanostructured iron aluminides

2004

Abstract The possibility of mechanically activated spark plasma sintering (MASPS) to perform simultaneously within a very short period of time the synthesis and the consolidation of nanophase iron aluminide from mechanically activated powders of Fe and Al in two different ratio (Fe53 at.% and Fe60 at.%) were confirmed in this work.

NanostructureMaterials scienceMechanical EngineeringMetallurgyMetals and AlloysIntermetallicSelf-propagating high-temperature synthesisSpark plasma sinteringPlasmaCondensed Matter PhysicsMechanics of MaterialsPowder metallurgyMetal powderGeneral Materials ScienceAluminideScripta Materialia
researchProduct

Spark Plasma Sintering à partir de poudres mécaniquement activées : compréhension des transitions de phase au cours d'un frittage réactif

2007

International audience; À " basse température " (entre 400 et 600 ◦C), l'oxydation de MoSi2 entraîne sa désintégration en poudre (phénomène de " peste "). De récents travaux ont montré que l'utilisation de MoSi2 dense et nano-organisé permettrait de ralentir ce phénomène de " peste ". Le défi de produire des matériaux denses et nano-organisés peut être relevé par le frittage " flash " réactif sous champ électrique à partir des poudres mécaniquement activées (Mechanically-Activated Spark Plasma Sintering, MASPS). Le contrôle de la composition et de la microstructure du composé intermétallique MoSi2 nécessite de déterminer les paramètres du frittage SPS (température, rampe de montée en tempér…

010302 applied physicsMaterials science0103 physical sciences[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Physical chemistrySpark plasma sinteringGeneral Materials ScienceNon oxide ceramics02 engineering and technology021001 nanoscience & nanotechnology0210 nano-technology01 natural sciencesMatériaux & Techniques
researchProduct

Investigations of the formation mechanism of nanostructured NbAl3 via MASHS reaction

2002

Abstract The nanostructured NbAl3 intermetallic compound was synthesized using the mechanically-activated self-propagating high-temperature synthesis (MASHS) technique. This process results from the combination of two steps: a short duration ball-milling of a pure elemental Nb+3Al powder mixture followed by a self-propagating high-temperature synthesis (SHS) reaction induced by the Nb+3Al reaction exothermicity. Synchrotron time-resolved XRD coupled with a 2D infrared camera were used to investigate the structural and thermal evolutions during the SHS reaction, and to study in situ the mechanism of NbAl3 formation. The influence of the incoming heat flux and the mechanical activation effect…

Materials scienceInfraredMechanical EngineeringMetallurgyMetals and AlloysNucleationNiobiumIntermetallicchemistry.chemical_elementGeneral ChemistryCombustionSynchrotronlaw.inventionchemistryChemical engineeringMechanics of MaterialslawPhase (matter)Materials ChemistryPowder mixtureIntermetallics
researchProduct

Simultaneous IR and time-resolved X-ray diffraction measurements for studying self-sustained reactions.

1998

Self-propagating high-temperature synthesis provides an attractive practical method for producing advanced materials such as ceramics, composites and intermetallics. This kind of reaction has been investigated in situ using time-resolved X-ray diffraction, with an X-ray synchrotron beam (D43 beamline, LURE, Orsay) coupled to simultaneous IR thermography to study structural transformations and thermal evolution. With short acquisition times (30 ms per pattern) it has been possible to observe several steps before obtaining compounds. Two different compound formations have been described: (i) the different steps of reaction, aluminium melting, subsequent temperature increase and fast reaction …

DiffractionNuclear and High Energy PhysicsRadiationMaterials scienceAnalytical chemistrySelf-propagating high-temperature synthesisIntermetallicchemistry.chemical_elementFEALSynchrotronlaw.inventionCrystallographychemistryAluminiumlawPhase (matter)X-ray crystallographyInstrumentationJournal of synchrotron radiation
researchProduct

Mechanical activation effect on the self-sustaining combustion reaction in the Mo–Si system

2001

Abstract Nanostructured molybdenum disilicide (MoSi2) was synthesized using an alternative route called MASHS (mechanically activated self-propagating high-temperature synthesis). This original process combines a short duration ball milling (MA) with a self-sustaining combustion (SHS). These two steps were investigated. The microstructure evolution of the powder mixture during mechanical activation was monitored using XRD profile analysis and TEM investigations. Short duration ball milling of (Mo+2Si) powder produces Mo and Si nanocrystallites into micrometric particles. It was demonstrated that pure α-MoSi2 with nanometric structure (DMoSi2=88 nm) could be produced via a very fast combusti…

NanostructureMaterials scienceMechanical EngineeringMetallurgyMetals and AlloysMolybdenum disilicideCombustionMicrostructurechemistry.chemical_compoundChemical engineeringchemistryMechanics of MaterialsPowder metallurgyMaterials ChemistryProfile analysisBall millPowder mixtureJournal of Alloys and Compounds
researchProduct

Processing conditions, microstructure and mechanical properties of hetero-nanostructured ODS FeAl alloys produced by spark plasma sintering

2013

International audience; Spark plasma sintering (SPS) has been used to sinter a milled oxide dispersion-strengthened (ODS) FeAl powder in order to prepare dense nanostructured parts. The effect of processing conditions including sintering temperature, holding time and degassing treatments on the microstructure and mechanical properties of the as-sintered materials was investigated. A hetero-nanostructure that contains nano, ultrafine and micrometric grains was confirmed to be developed whatever the processing window, due to the large temperature difference generated during the SPS process itself. The grain size distribution can be tailored by selecting a combination of sintering temperature …

Materials scienceMILLED POWDERDUCTILITYOxideFABRICATIONSpark plasma sinteringSintering02 engineering and technology01 natural scienceschemistry.chemical_compound0103 physical sciencesNano-General Materials ScienceCONSOLIDATION010302 applied physicsCOATINGSNANOCRYSTALLINEIRON ALUMINIDEMechanical EngineeringMetallurgyFEALHIGH-STRENGTH021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructureGrain sizeNanocrystalline materialchemistryMechanics of MaterialsX-RAY0210 nano-technologyULTRAFINE-GRAINED METALS
researchProduct

In situ synchrotron characterization of mechanically activated self-propagating high-temperature synthesis applied in Mo–Si system

1999

Abstract An original experiment was designed to monitor structural and thermal evolutions during the MASHS (Mechanically Activated Self-propagating High-temperature Synthesis) process in the Mo–Si system. Time-Resolved X-Ray Diffraction (TRXRD) coupled with an infrared imaging technique was performed to study, in situ, the formation of the α-MoSi2 phase in the combustion front. Despite a temporal resolution of 50 ms between two consecutive diffractograms, no intermediate phase was observed during the passage of the combustion front. The only reaction responsible for the self-sustentation is Mo+2Si→MoSi2 in the primary zone inside the combustion wave. The mechanical activation was found to i…

DiffractionNanostructureMaterials sciencePolymers and PlasticsMetals and AlloysSelf-propagating high-temperature synthesisAnalytical chemistryMicrostructureCombustionElectronic Optical and Magnetic MaterialsTemperature gradientCrystallographyPhase (matter)Ceramics and CompositesFront velocityActa Materialia
researchProduct