0000000000182587
AUTHOR
Keijo Mönkkönen
Inflaatio ja rakenteiden synty
Kosmologian standardimallina tunnettu LCDM-malli on vakiinnuttanut asemansa parhaana mahdollisena selityksenä viimeaikaisille kosmologisille havainnoille. Ilman ns. inflaatiovaihetta malli törmää kuitenkin varhaista maailmankaikkeutta koskeviin vakaviin ongelmiin. Se ei kykene antamaan selitystä avaruuden laakeudelle, taustasäteilyn tasaisuudelle, raskaiden reliikkihiukkasten puuttumiselle ja taustasäteilyn anisotropioille. Edellä mainittujen ongelmien ratkaisuksi on esitetty kosmologista inflaatiota, jonka mukaan hyvin varhainen maailmankaikkeus on käynyt läpi kehitysvaiheen, jossa sen koko kasvoi lähes eksponentiaalisesti. Tässä pro gradu -tutkielmassa perehdytään lähdeaineiston avulla in…
Partial Data Problems and Unique Continuation in Scalar and Vector Field Tomography
AbstractWe prove that if P(D) is some constant coefficient partial differential operator and f is a scalar field such that P(D)f vanishes in a given open set, then the integrals of f over all lines intersecting that open set determine the scalar field uniquely everywhere. This is done by proving a unique continuation property of fractional Laplacians which implies uniqueness for the partial data problem. We also apply our results to partial data problems of vector fields.
Unique continuation of the normal operator of the x-ray transform and applications in geophysics
We show that the normal operator of the X-ray transform in $\mathbb{R}^d$, $d\geq 2$, has a unique continuation property in the class of compactly supported distributions. This immediately implies uniqueness for the X-ray tomography problem with partial data and generalizes some earlier results to higher dimensions. Our proof also gives a unique continuation property for certain Riesz potentials in the space of rapidly decreasing distributions. We present applications to local and global seismology. These include linearized travel time tomography with half-local data and global tomography based on shear wave splitting in a weakly anisotropic elastic medium.
Kinemaattinen inversio-ongelma pallosymmetrisellä monistolla
Tutkielman pääaiheena on maanjäristysaaltoihin ja Maan sisärakenteen tutkimiseen liittyvä käänteinen kinemaattinen ongelma. Maapalloa mallinnetaan kolmiulotteisella kompaktilla reunallisella monistolla \(\bar{B}^3(0, R)\), jonka säde normitetaan ykköseksi \(R=1\). Aaltorintamat kulkevat pitkin geodeeseja, jotka sijaitsevat kokonaan avoimessa pallossa \(B^3(0, 1)\) lukuun ottamatta päätepisteitä, jotka ovat reunalla \(S^2(0, 1)\). Symmetrioiden nojalla tarkastelu voidaan siirtää tasoon \(\mathbb{R}^2\), jossa riittää tutkia kiekon \(\bar{B}^2(0, 1)\) geodeeseja. Äänennopeus \(v=v(r)\) oletetaan isotrooppiseksi ja aidosti positiiviseksi \(C^{1,1}([0, 1])\)-funktioksi, jolle \(v^{\prime}(0)=0\…
X-ray Tomography of One-forms with Partial Data
If the integrals of a one-form over all lines meeting a small open set vanish and the form is closed in this set, then the one-form is exact in the whole Euclidean space. We obtain a unique continuation result for the normal operator of the X-ray transform of one-forms, and this leads to one of our two proofs of the partial data result. Our proofs apply to compactly supported covector-valued distributions.
The higher order fractional Calderón problem for linear local operators : Uniqueness
We study an inverse problem for the fractional Schr\"odinger equation (FSE) with a local perturbation by a linear partial differential operator (PDO) of order smaller than the order of the fractional Laplacian. We show that one can uniquely recover the coefficients of the PDO from the Dirichlet-to-Neumann (DN) map associated to the perturbed FSE. This is proved for two classes of coefficients: coefficients which belong to certain spaces of Sobolev multipliers and coefficients which belong to fractional Sobolev spaces with bounded derivatives. Our study generalizes recent results for the zeroth and first order perturbations to higher order perturbations.
Boundary rigidity for Randers metrics
If a non-reversible Finsler norm is the sum of a reversible Finsler norm and a closed 1-form, then one can uniquely recover the 1-form up to potential fields from the boundary distance data. We also show a boundary rigidity result for Randers metrics where the reversible Finsler norm is induced by a Riemannian metric which is boundary rigid. Our theorems generalize Riemannian boundary rigidity results to some non-reversible Finsler manifolds. We provide an application to seismology where the seismic wave propagates in a moving medium.
Unique continuation property and Poincar�� inequality for higher order fractional Laplacians with applications in inverse problems
We prove a unique continuation property for the fractional Laplacian $(-\Delta)^s$ when $s \in (-n/2,\infty)\setminus \mathbb{Z}$. In addition, we study Poincar\'e-type inequalities for the operator $(-\Delta)^s$ when $s\geq 0$. We apply the results to show that one can uniquely recover, up to a gauge, electric and magnetic potentials from the Dirichlet-to-Neumann map associated to the higher order fractional magnetic Schr\"odinger equation. We also study the higher order fractional Schr\"odinger equation with singular electric potential. In both cases, we obtain a Runge approximation property for the equation. Furthermore, we prove a uniqueness result for a partial data problem of the $d$-…
The Geodesic Ray Transform on Spherically Symmetric Reversible Finsler Manifolds
We show that the geodesic ray transform is injective on scalar functions on spherically symmetric reversible Finsler manifolds where the Finsler norm satisfies a Herglotz condition. We use angular Fourier series to reduce the injectivity problem to the invertibility of generalized Abel transforms and by Taylor expansions of geodesics we show that these Abel transforms are injective. Our result has applications in linearized boundary rigidity problem on Finsler manifolds and especially in linearized elastic travel time tomography.