0000000000184383
AUTHOR
Anton Lindahl
Isobar suppression in AMS using laser photodetachment
Abstract We are investigating the possibility of using laser photodetachment of negative atomic and molecular ions as an additional isobaric selection filter in accelerator mass spectrometry. The aim of this study is to find a possibility to further improve the detection limit for long-lived heavy radionuclides at AMS facilities. We will focus on the astrophysical relevant radionuclide 182Hf, which is one of the isotopes measured with the 3 MV tandem AMS facility VERA (Vienna Environmental Research Accelerator) at the University of Vienna. Laser-induced isobar suppression is also of importance for radioactive-beam facilities. The present detection limit for measuring the isotope ratio 182Hf…
Lithium isotopes beyond the drip line
The unbound isotopes 10Li, 12Li and 13Li have been observed after nucleon-knockout reactions at relativistic energies with 11Li and 14Be beams impinging on a liquid hydrogen target. The channels , and were analysed in the ALADIN-LAND setup at GSI. The 10Li data confirm earlier findings, while the 12Li and 13Li nuclei were observed for the first time. The relative-energy spectrum shows that the ground state of 12Li can be described as a virtual s-state with a scattering length of -13.7(1.6) fm. A broad energy spectrum was found for the channel. Based on the assumption that the relative-energy spectrum is dominated by a correlated background presumably stemming from initial correlations in th…
Depletion of the excited state population in negative ions using laser photodetachment in a gas-filled RF quadrupole ion guide
International audience; The depopulation of excited states in beams of negatively charged carbon and silicon ions was demonstrated using collisional detachment and laser photodetachment in a radio frequency quadrupole ion guide filled with helium. The high lying, loosely bound 2 D excited state in C − was completely depleted through collisional detachment alone, which was quantitatively determined within 6%. For Si − the combined signal from the population in the 2 P and 2 D excited states was only partly depleted through collisions in the cooler. The loosely bound 2 P state was likely to be completely depopulated and the more tightly bound 2 D state was partly depopulated through collision…
The electron affinity of phosphorus
We have measured the energies of all three fine structure components in the 3PJ ground state of the negative ion of phosphorus using laser photodetachment threshold spectroscopy. The experiment yielded an electron affinity of 746.68(6) meV. The ΔJ = 2–0, 2–1 and 1–0 fine structure splittings were determined to be 32.73(7) meV, 22.48(7) meV and 10.25(3) meV, respectively. In the experiment, a mass selected beam of P− ions was merged with the output from a pulsed infrared optical parametric oscillator. The residual atoms produced in the photodetachment process were detected and used as a monitor of the photon-energy dependence of the relative cross section. The Wigner law was fitted to each o…
Feasibility of photodetachment isobar suppression of WF with respect to HfF
Abstract The feasibility of using laser photodetachment as a means for isobar suppression in accelerator mass spectrometry has been investigated for the special case of HfF 5 − /WF 5 − . A method for absolute photodetachment cross section measurements was applied and the cross sections of tungsten pentafluoride and hafnium pentafluoride negative ions were measured. The measurements indicate that the photodetachment cross section for WF 5 − is at least 100 times larger than for HfF 5 − at the wavelength of the fourth harmonic of the Nd:YAG laser at 266 nm. The absolute cross section for WF 5 − at this photon energy was found to be (2.8 ± 0.3) × 10 −18 cm 2 , while an upper limit of 2 × 10 −…
Experimental investigation of electron impact onSi2−
A merged beams technique has been used to investigate collisions between electrons and $\text{Si}_{2}{}^{\ensuremath{-}}$ ions over a relative kinetic energy range of 0--210 eV. Absolute cross sections for pure electron detachment, detachment plus dissociation, and dissociation involving atomic and ionic products were measured. The dominant process over the energy range studied is pure electron detachment. A search for a resonance associated with a ${\text{Si}}_{2}$ dianion was made but none was observed.