0000000000185418

AUTHOR

M. Hies

A compact apparatus for mass selective resonance ionization spectroscopy in a buffer gas cell

Abstract An ultra-sensitive laser spectroscopic method for the investigation of transuranium nuclides has been developed based on resonance ionization in an argon buffer gas cell. This method has been combined with ion-guide extraction and mass selective direct detection of the resonantly ionized atoms. Using argon as a buffer gas, recoils of fusion reactions can be thermalized even at low pressure. The differential pumping system consists of only one roots pump and two turbo molecular pumps. The set-up has been tested with 243 Am evaporated from a filament located inside the optical gas cell. Resonance ionization is performed using a two-step excitation with an excimer-dye-laser combinatio…

research product

Radiation detected resonance ionization spectroscopy on208Tl and242fAm

An ultra-sensitive laser spectroscopic method has been developed for the hyperfine spectroscopy of short-lived isotopes far off stability produced by heavy ion induced nuclear reactions at very weak intensity (> 1/s). It is based on resonance ionization spectroscopy in a buffer gas cell with radiation detection of the ionization process (RADRIS). As a first on-line application of RADRIS optical spectroscopy at242fAm fission isomers is in progress at the low target production rate of 10/s. The resonance ionization has been performed in two steps utilizing an excimer dye laser combination with a repetition rate of 300 Hz. The first resonant step proceeds through terms which correspond to wave…

research product

Fission fragment anisotropy for the 242mAm fission isomer by spin exchange pumping with polarized rubidium vapour

Abstract The foundations of an experiment have been worked out with which, in principle, the spin, hyperfine constants and the isomer shift of the 14 ms fission isomer 242mAm can be measured. Such an experiment would be based on the fission fragment anisotropy signal which has actually been observed in this work after spin exchange pumping with polarized rubidium vapour in an optical buffer gas cell. A decrease of the count rate of (12±4)% has been measured at 90% with respect to the quantization axis. From this result it is concluded that the nuclear spin of the 242mAm fission isomer must be larger than 1. The low-energy fission isomers originating from the 242Pu(d, 2n)242mAm reaction have…

research product

Isotope Shift Measurements for Superdeformed Fission Isomeric States

Optical isotope shift measurements have been performed for the ${}^{240,242}{\mathrm{Am}}^{f}$ fission isomers with low target production rates of $10{\mathrm{s}}^{\ensuremath{-}1}$ employing resonance ionization spectroscopy in a buffer gas cell. Isotope shift ratios ${\mathrm{IS}}^{240f,241}/{\mathrm{IS}}^{243,241}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}39.2(8)$ and ${\mathrm{IS}}^{242f,241}/{\mathrm{IS}}^{243,241}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}41.4(8)$ have been measured at the 500.02 nm transition. A difference in the nuclear mean charge radii $\ensuremath{\delta}〈{r}^{2}{〉}_{\mathrm{opt}}^{242f,241}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}5.34(2…

research product

Isotope shift and hyperfine structure measurements at the242f Am fission isomer

Istope shift and hyperfine structure measurements have been performed for the242fAm fission isomer with target production rates of only a few per second. The method is based on resonance ionization spectroscopy (RIS) in a buffer gas cell with radioactive decay detection of the ionization process (RADRIS). A relative isotope shift ratioX exp=IS242f,241/ IS243,241=41.7±0.9 has been measured for the 500.02 nm transition corresponding to a nuclear parameter Λ242f,241=5.4±0.3 fm2. The analysis of the quadrupole moment based on the deformed Fermi-model of the nuclear charge distribution including second order corrections results inQ 20=38.2 ±1.4( −0.8 +0.4 )model eb. The measurement of the hyperf…

research product

First observation of a resonance ionization signal on242mAm fission isomers

The feasibility of a hyperfine spectroscopy on242mAm fission isomers has been demonstrated at the low target production rate of 10/s. The experimental method employed is based on resonance ionization spectroscopy in a buffer gas cell with detection of the ionization process by means of the fission decay of the isomers. The resonance ionization has been performed in two steps, utilizing an excimer dye laser combination with a repetition rate of 300 Hz. The first resonant step proceeds through theJ=7/2 term at 21440.35 cm−1, which has been excited with the tuncable dye laser beam of a wavelength of 466.28 nm, the second non-resonant step is achieved with the 351 nm radiation of the excimer la…

research product