0000000000185485
AUTHOR
Wajid Mumtaz
Hybrid Deep Shallow Network for Assessment of Depression Using Electroencephalogram Signals
Depression is a mental health disorder characterised by persistently depressed mood or loss of interest in activities resulting impairment in daily life significantly. Electroencephalography (EEG) can assist with the accurate diagnosis of depression. In this paper, we present two different hybrid deep learning models for classification and assessment of patient suffering with depression. We have combined convolutional neural network with Gated recurrent units (RGUs), thus the proposed network is shallow and much smaller in size in comparison to its counter LSTM network. In addition to this, proposed approach is less sensitive to parameter settings. Extensive experiments on EEG dataset shows…
Automatic Segmentation Using a Hybrid Dense Network Integrated With an 3D-Atrous Spatial Pyramid Pooling Module for Computed Tomography (CT) Imaging
Computed tomography (CT) with a contrast-enhanced imaging technique is extensively proposed for the assessment and segmentation of multiple organs, especially organs at risk. It is an important factor involved in the decision making in clinical applications. Automatic segmentation and extraction of abdominal organs, such as thoracic organs at risk, from CT images are challenging tasks due to the low contrast of pixel values surrounding other organs. Various deep learning models based on 2D and 3D convolutional neural networks have been proposed for the segmentation of medical images because of their automatic feature extraction capability based on large labeled datasets. In this paper, we p…
A deep learning framework for automatic diagnosis of unipolar depression.
Abstract Background and purpose In recent years, the development of machine learning (ML) frameworks for automatic diagnosis of unipolar depression has escalated to a next level of deep learning frameworks. However, this idea needs further validation. Therefore, this paper has proposed an electroencephalographic (EEG)-based deep learning framework that automatically discriminated depressed and healthy controls and provided the diagnosis. Basic procedures In this paper, two different deep learning architectures were proposed that utilized one dimensional convolutional neural network (1DCNN) and 1DCNN with long short-term memory (LSTM) architecture. The proposed deep learning architectures au…