6533b855fe1ef96bd12b0913

RESEARCH PRODUCT

A deep learning framework for automatic diagnosis of unipolar depression.

Abdul QayyumWajid Mumtaz

subject

AdultMale020205 medical informaticsComputer science[SDV]Life Sciences [q-bio]Health Informatics02 engineering and technologyElectroencephalographyMachine learningcomputer.software_genreConvolutional neural network03 medical and health sciencesAutomation0302 clinical medicineDeep LearningEeg data0202 electrical engineering electronic engineering information engineeringmedicineHumans030212 general & internal medicineComputingMilieux_MISCELLANEOUSDepression (differential diagnoses)Depressive Disordermedicine.diagnostic_testbusiness.industryDeep learningElectroencephalographyCase-Control StudiesFemaleArtificial intelligenceNeural Networks Computerbusinesscomputer

description

Abstract Background and purpose In recent years, the development of machine learning (ML) frameworks for automatic diagnosis of unipolar depression has escalated to a next level of deep learning frameworks. However, this idea needs further validation. Therefore, this paper has proposed an electroencephalographic (EEG)-based deep learning framework that automatically discriminated depressed and healthy controls and provided the diagnosis. Basic procedures In this paper, two different deep learning architectures were proposed that utilized one dimensional convolutional neural network (1DCNN) and 1DCNN with long short-term memory (LSTM) architecture. The proposed deep learning architectures automatically learn patterns in the EEG data that were useful for classifying the depressed and healthy controls. In addition, the proposed models were validated with resting-state EEG data obtained from 33 depressed patients and 30 healthy controls. Main findings As results, significant differences were observed between the two groups. The classification results involving the CNN model were accuracy = 98.32%, precision = 99.78%, recall = 98.34%, and f-score = 97.65%. In addition, the study has reported LSTM with 1DCNN classification accuracy = 95.97%, precision = 99.23%, recall = 93.67%, and f-score = 95.14%. Conclusions Deep learning frameworks could revolutionize the clinical applications for EEG-based diagnosis for depression. Based on the results, it may be concluded that the deep learning framework could be used as an automatic method for diagnosing the depression.

10.1016/j.ijmedinf.2019.103983https://pubmed.ncbi.nlm.nih.gov/31586827