A TEST of the NATURE of the FE K LINE in the NEUTRON STAR LOW-MASS X-RAY BINARY SERPENS X-1
Broad Fe K emission lines have been widely observed in the X-ray spectra of black hole systems, and in neutron star systems as well. The intrinsically narrow Fe K fluorescent line is generally believed to be part of the reflection spectrum originating in an illuminated accretion disk, and broadened by strong relativistic effects. However, the nature of the lines in neutron star LMXBs has been under debate. We therefore obtained the longest, high-resolution X-ray spectrum of a neutron star LMXB to date with a 300 ks Chandra HETGS observation of Serpens X-1. The observation was taken under the "continuous clocking" mode and thus free of photon pile-up effects. We carry out a systematic analys…
The Athena X-ray Integral Field Unit (X-IFU)
Event: SPIE Astronomical Telescopes + Instrumentation, 2016, Edinburgh, United Kingdom.
The performance of the ATHENA X-ray Integral Field Unit
The X-ray Integral Field Unit (X-IFU) is a next generation microcalorimeter planned for launch onboard the Athena observatory. Operating a matrix of 3840 superconducting Transition Edge Sensors at 90 mK, it will provide unprecedented spectro-imaging capabilities (2.5 eV resolution, for a field of view of 5') in the soft X-ray band (0.2 up to 12 keV), enabling breakthrough science. The definition of the instrument evolved along the phase A study and we present here an overview of its predicted performances and their modeling, illustrating how the design of the X-IFU meets its top-level scientific requirements. This article notably covers the energy resolution, count-rate capability, quantum …
The Chameleon on the branches: spectral state transition and dips in NGC 247 ULX-1
Soft Ultra-Luminous X-ray (ULXs) sources are a subclass of the ULXs that can switch from a supersoft spectral state, where most of the luminosity is emitted below 1 keV, to a soft spectral state with significant emission above 1 keV. In a few systems, dips have been observed. The mechanism behind this state transition and the dips nature are still debated. To investigate these issues, we obtained a long XMM-Newton monitoring campaign of a member of this class, NGC 247 ULX-1. We computed the hardness-intensity diagram for the whole dataset and identified two different branches: the normal branch and the dipping branch, which we study with four and three hardness-intensity resolved spectra, r…
Accretion in strong field gravity with eXTP
In this paper we describe the potential of the enhanced X-ray Timing and Polarimetry (eXTP) mission for studies related to accretion flows in the strong field gravity regime around both stellar-mass and supermassive black-holes. eXTP has the unique capability of using advanced 'spectral-timing-polarimetry' techniques to analyze the rapid variations with three orthogonal diagnostics of the flow and its geometry, yielding unprecedented insight into the inner accreting regions, the effects of strong field gravity on the material within them and the powerful outflows which are driven by the accretion process.
The Large Area Detector of LOFT: the Large Observatory for X-ray Timing
LOFT (Large Observatory for X-ray Timing) is one of the five candidates that were considered by ESA as an M3 mission (with launch in 2022-2024) and has been studied during an extensive assessment phase. It is specifically designed to perform fast X-ray timing and probe the status of the matter near black holes and neutron stars. Its pointed instrument is the Large Area Detector (LAD), a 10 m 2 -class instrument operating in the 2-30keV range, which holds the capability to revolutionise studies of variability from X-ray sources on the millisecond time scales. The LAD instrument has now completed the assessment phase but was not down-selected for launch. However, during the assessment, most o…
A Hard Look at the Neutron Stars and Accretion Disks in 4U 1636-53, GX 17+2, and 4U 1705-44 with NuStar
We present $\emph{NuSTAR}$ observations of neutron star (NS) low-mass X-ray binaries: 4U 1636-53, GX 17+2, and 4U 1705-44. We observed 4U 1636-53 in the hard state, with an Eddington fraction, $F_{\mathrm{Edd}}$, of 0.01; GX 17+2 and 4U 1705-44 were in the soft state with fractions of 0.57 and 0.10, respectively. Each spectrum shows evidence for a relativistically broadened Fe K$_{\alpha}$ line. Through accretion disk reflection modeling, we constrain the radius of the inner disk in 4U 1636-53 to be $R_{in}=1.03\pm0.03$ ISCO (innermost stable circular orbit) assuming a dimensionless spin parameter $a_{*}=cJ/GM^{2}=0.0$, and $R_{in}=1.08\pm0.06$ ISCO for $a_{*}=0.3$ (errors quoted at 1 $\sig…
The filter wheel and filters development for the X-IFU instruments onboard Athena
Athena is the large mission selected by ESA in 2013 to investigate the science theme “Hot and Energetic Universe” and presently scheduled for launch in 2028. One of the two instruments located at the focus of the 12 m-long Athena telescope is the X-ray Integral Field Unit (X-IFU). This is an array of TES microcalorimeters that will be operated at temperatures of 50 mK in order to perform high resolution spectroscopy with an energy resolution down to 2.5 eV at energies < 7 keV. In order to cope with the large dynamical range of X-ray fluxes spanned by the celestial objects Athena will be observing, the X-IFU will be equipped with a filter wheel. This will allow the user to fine tune the i…
The x-ray microcalorimeter spectrometer onboard Athena
Trabajo presentado a la conferencia: "Space Telescopes and Instrumentation: Ultraviolet to Gamma Ray" celebrada en Amsterdam (Holanda) el 1 de julio de 2012.-- et al.
ATHENA X-IFU thermal filters development status toward the end of the instrument phase-A
Copyright 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. The X-ray Integral Field Unit (X-IFU) is one of the two instruments of the Athena astrophysics space mission approved by ESA in the Cosmic Vision 2015-2025 Science Programme. The X-IFU consists of a large array of transition edge sensor micro-calorimeters that will operate at 100 mK inside a sophisticated cryostat. A set of thin filters, highly transparent to X-rays, will be m…
Testing the X-IFU calibration requirements: an example for quantum efficiency and energy resolution
With its array of 3840 Transition Edge Sensors (TESs) operated at 90 mK, the X-Ray Integral Field Unit (X-IFU) on board the ESA L2 mission Athena will provide spatially resolved high-resolution spectroscopy (2.5 eV FWHM up to 7 keV) over the 0.2 to 12 keV bandpass. The in-flight performance of the X-IFU will be strongly affected by the calibration of the instrument. Uncertainties in the knowledge of the overall system, from the filter transmission to the energy scale, may introduce systematic errors in the data, which could potentially compromise science objectives - notably those involving line characterisation e.g. turbulence velocity measurements - if not properly accounted for. Defining…
The Large Observatory For x-ray Timing
The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideFi…
Quasi-periodic dipping in the ultraluminous X-ray source, NGC 247 ULX-1
Most ultraluminous X-ray sources (ULXs) are believed to be stellar mass black holes or neutron stars accreting beyond the Eddington limit. Determining the nature of the compact object and the accretion mode from broadband spectroscopy is currently a challenge, but the observed timing properties provide insight into the compact object and details of the geometry and accretion processes. Here we report a timing analysis for an 800 ks XMM-Newton campaign on the supersoft ultraluminous X-ray source, NGC 247 ULX-1. Deep and frequent dips occur in the X-ray light curve, with the amplitude increasing with increasing energy band. Power spectra and coherence analysis reveals the dipping preferential…
ECLAIRs: A microsatellite for the prompt optical and X-ray emission of Gamma-Ray Bursts
The prompt gamma-ray emission of Gamma-Ray Bursts (GRBs) is currently interpreted in terms of radiation from electrons accelerated in internal shocks in a relativistic fireball. On the other hand, the origin of the prompt (and early afterglow) optical and X-ray emission is still debated, mostly because very few data exist for comparison with theoretical predictions. It is however commonly agreed that this emission hides important clues on the GRB physics and can be used to constrain the fireball parameters, the acceleration and emission processes and to probe the surroundings of the GRBs. ECLAIRs is a microsatellite devoted to the observation of the prompt optical and X-ray emission of GRBs…
The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase
The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (i…
The focal plane assembly for the Athena X-ray Integral Field Unit instrument
This paper summarizes a preliminary design concept for the focal plane assembly of the X-ray Integral Field Unit on the Athena spacecraft, an imaging microcalorimeter that will enable high spectral resolution imaging and point-source spectroscopy. The instrument's sensor array will be a ~ 3840-pixel transition edge sensor (TES) microcalorimeter array, with a frequency domain multiplexed SQUID readout system allowing this large-format sensor array to be operated within the thermal constraints of the instrument's cryogenic system. A second TES detector will be operated in close proximity to the sensor array to detect cosmic rays and secondary particles passing through the sensor array for off…
The X-ray Integral Field Unit (X-IFU) for Athena
Athena is designed to implement the Hot and Energetic Universe science theme selected by the European Space Agency for the second large mission of its Cosmic Vision program. The Athena science payload consists of a large aperture high angular resolution X-ray optics (2 m2 at 1 keV) and twelve meters away, two interchangeable focal plane instruments: the X-ray Integral Field Unit (X-IFU) and the Wide Field Imager. The X-IFU is a cryogenic X-ray spectrometer, based on a large array of Transition Edge Sensors (TES), oering 2.5 eV spectral resolution, with approximately 5" pixels, over a field of view of 5' in diameter. In this paper, we present the X-IFU detector and readout electronics princi…
Wind-luminosity evolution in NLS1 AGN 1H 0707−495
Ultra-fast outflows (UFOs) have been detected in the high-quality X-ray spectra of a number of active galactic nuclei (AGN) with fairly high accretion rates and are thought to significantly contribute to the AGN feedback. After a decade of dedicated study, their launching mechanisms and structure are still not well understood, but variability techniques may provide useful constraints. In this work, therefore, we perform a flux-resolved X-ray spectroscopy on a highly accreting and variable NLS1 AGN, 1H 0707-495, using all archival XMM-Newton observations to study the structure of the UFO. We find that the wind spectral lines weaken at higher luminosities, most likely due to an increasing ion…
The ATHENA X-ray Integral Field Unit (X-IFU)
Event: SPIE Astronomical Telescopes + Instrumentation, 2018, Austin, Texas, United States.