0000000000190926

AUTHOR

Baldur Bergsson

Gas emissions and crustal deformation from the Krýsuvík high temperature geothermal system, Iceland

Abstract The Krýsuvik volcanic system is located on the oblique spreading Reykjanes Peninsula, SW Iceland. Since early 2009 the region has been undergoing episodes of localized ground uplift and subsidence. From April–November 2013, we operated near-real time monitoring of gas emissions in Krýsuvik, using a Multi-component Gas Analyzer System (Multi-GAS), collecting data on gas composition from a fumarole (H2O, CO2, SO2, H2S). The dataset in this study, comprises a near-continuous gas composition time series, the quantification of diffuse CO2 gas flux, analytical results for direct samples of dry gas, seismic records, and GPS data. Gas emissions from the Krýsuvik geothermal system were exam…

research product

Degassing regime of Hekla volcano 2012-2013

Hekla is a frequently active volcano with an infamously short pre-eruptive warning period. Our project contributes to the ongoing work on improving Hekla's monitoring and early warning systems. In 2012 we began monitoring gas release at Hekla. The dataset comprises semi-permanent near-real time measurements with a MultiGAS system, quantification of diffuse gas flux, and direct samples analysed for composition and isotopes (δ13C, δD and δ18O). In addition, we used reaction path modelling to derive information on the origin and reaction pathways of the gas emissions.Hekla's quiescent gas composition was CO2-dominated (0.8mol fraction) and the δ13C signature was consistent with published value…

research product

Sulfur Degassing From Steam-Heated Crater Lakes: El Chichón (Chiapas, Mexico) and Víti (Iceland)

The composition of the gases released by El Chichón (Chiapas, Mexico) and Víti (Askja volcano, Iceland) volcanic lakes is examined by Multi-GAS for the first time. Our results demonstrate that H2S and SO2 are degassed by these pH 2–3 lakes. We find higher CO2/H2S and H2/H2S ratios in the lakes' emissions (31–5,685 and 0.6–35, respectively) than in the fumarolic gases feeding the lakes (13–33 and 0.08–0.5, respectively), evidencing that only a fraction (0.2–5.4% at El Chichón) of the H2S(g) contributed by the subaquatic fumaroles ultimately reaches the atmosphere. At El Chichón, we estimate a H2S output from the crater lake of 0.02–0.06 t/day. Curiously, SO2 is also detected at trace levels …

research product

Reaction path models of magmatic gas scrubbing

Gas-water-rock reactions taking place within volcano-hosted hydrothermal systems scrub reactive, water-soluble species (sulfur, halogens) from the magmatic gas phase, and as such play a major control on the composition of surface gas manifestations. A number of quantitative models of magmatic gas scrubbing have been proposed in the past, but no systematic comparison of model results with observations from natural systems has been carried out, to date. Here, we present the results of novel numerical simulations, in which we initialized models of hydrothermal gas-water-rock at conditions relevant to Icelandic volcanism. We focus on Iceland as an example of a "wet" volcanic region where scrubb…

research product

Tunable diode laser measurements of hydrothermal/volcanic CO<sub>2</sub> and implications for the global CO<sub>2</sub> budget

Abstract. Quantifying the CO2 flux sustained by low-temperature fumarolic fields in hydrothermal/volcanic environments has remained a challenge, to date. Here, we explored the potential of a commercial infrared tunable laser unit for quantifying such fumarolic volcanic/hydrothermal CO2 fluxes. Our field tests were conducted between April 2013 and March 2014 at Nea Kameni (Santorini, Greece), Hekla and Krýsuvík (Iceland) and Vulcano (Aeolian Islands, Italy). At these sites, the tunable laser was used to measure the path-integrated CO2 mixing ratios along cross sections of the fumaroles' atmospheric plumes. By using a tomographic post-processing routine, we then obtained, for each manifestati…

research product

Gradual caldera collapse at Bardarbunga volcano, Iceland, regulated by lateral magma outflow

Large volcanic eruptions on Earth commonly occur with a collapse of the roof of a crustal magma reservoir, forming a caldera. Only a few such collapses occur per century, and the lack of detailed observations has obscured insight into the mechanical interplay between collapse and eruption.We usemultiparameter geophysical and geochemical data to show that the 110-square kilometer and 65-meter-deep collapse of Bárdarbunga caldera in 2014–2015 was initiated through withdrawal of magma, and lateral migration through a 48-kilometers-long dike, from a 12-kilometers deep reservoir. Interaction between the pressure exerted by the subsiding reservoir roof and the physical properties of the subsurfac…

research product

Ground-Based measurements of the 2014-2015 holuhraun volcanic cloud (Iceland)

he 2014–2015 Bárðarbunga fissure eruption at Holuhraun in central Iceland was distinguished by the high emission of gases, in total 9.6 Mt SO2, with almost no tephra. This work collates all ground-based measurements of this extraordinary eruption cloud made under particularly challenging conditions: remote location, optically dense cloud with high SO2 column amounts, low UV intensity, frequent clouds and precipitation, an extensive and hot lava field, developing ramparts, and high-latitude winter conditions. Semi-continuous measurements of SO2 flux with three scanning DOAS instruments were augmented by car traverses along the ring-road and along the lava. The ratios of other gases/SO2 were …

research product

New insights into the magmatic-hydrothermal system and volatile budget of Lastarria volcano, Chile: Integrated results from the 2014 IAVCEI CCVG 12th Volcanic Gas Workshop

Recent geophysical evidence for large-scale regional crustal inflation and localized crustal magma intrusion has made Lastarria volcano (northern Chile) the target of numerous geological, geophysical, and geochemical studies. The chemical composition of volcanic gases sampled during discrete campaigns from Lastarria volcano indicated a well-developed hydrothermal system from direct fumarole samples in A.D. 2006, 2008, and 2009, and shallow magma degassing using measurements from in situ plume sampling techniques in 2012. It is unclear if the differences in measured gas compositions and resulting interpretations were due to artifacts of the different sampling methods employed, short-term exc…

research product