0000000000190937
AUTHOR
Sophia Arnauts
Nanoscale etching of III-V semiconductors in acidic hydrogen peroxide solution: GaAs and InP, a striking contrast in surface chemistry
In this study of nanoscale etching for state-of-the-art device technology, the importance of surface chemistry, in particular the nature of the surface oxide, is demonstrated for two III-V materials. Striking differences in etching kinetics were found for GaAs and InP in sulphuric and hydrochloric acidic solutions containing hydrogen peroxide. Under similar conditions, etching of GaAs was much faster, while the dependence of the etch rate on pH, and on H2O2 and acid concentrations also differed markedly for the two semiconductors. Surface analysis techniques provided information on the product layer present after etching: strongly non-stoichiometric porous (hydr)oxides on GaAs and a thin st…
Nanoscale Etching of GaAs and InP in Acidic H<sub>2</sub>O<sub>2</sub> Solution: A Striking Contrast in Kinetics and Surface Chemistry
In this study of nanoscale etching for state-of-the-art device technology the importance of the nature of the surface oxide, is demonstrated for two III-V materials. Etching kinetics for GaAs and InP in acidic solutions of hydrogen peroxide are strikingly different. GaAs etches much faster, while the dependence of the etch rate on the H+ concentration differs markedly for the two semiconductors. Surface analysis techniques provided information on the surface composition after etching: strongly non-stoichiometric porous (hydr)oxides on GaAs and a thin stoichiometric oxide that forms a blocking layer on InP. Reaction schemes are provided that allow one to understand the results, in particular…