0000000000191539
AUTHOR
M. Scholz
Correction of the deterministic part of space–charge interaction in momentum microscopy of charged particles
Abstract Ultrahigh spectral brightness femtosecond XUV and X-ray sources like free electron lasers (FEL) and table-top high harmonics sources (HHG) offer fascinating experimental possibilities for analysis of transient states and ultrafast electron dynamics. For electron spectroscopy experiments using illumination from such sources, the ultrashort high-charge electron bunches experience strong space–charge interactions. The Coulomb interactions between emitted electrons results in large energy shifts and severe broadening of photoemission signals. We propose a method for a substantial reduction of the effect by exploiting the deterministic nature of space–charge interaction. The interaction…
Overview of the JET results
Since the installation of an ITER-like wall, the JET programme has focused on the consolidation of ITER design choices and the preparation for ITER operation, with a specific emphasis given to the bulk tungsten melt experiment, which has been crucial for the final decision on the material choice for the day-one tungsten divertor in ITER. Integrated scenarios have been progressed with the re-establishment of long-pulse, high-confinement H-modes by optimizing the magnetic configuration and the use of ICRH to avoid tungsten impurity accumulation. Stationary discharges with detached divertor conditions and small edge localized modes have been demonstrated by nitrogen seeding. The differences in…
Response of Chinese Hamster V79 Multicellular Spheroids Exposed to High-Energy Carbon Ions
Chinese hamster V79-379A spheroids 200 +/- 30 microm (+/- SD) in diameter were irradiated in agitated medium in different oxygen atmospheres with (1) 227 MeV/nucleon (12)C(+6) ions (plateau region) to model tissue in the entrance channel during therapy, (2) carbon ions in the extended Bragg peak modeling tissue in the target volume, or (3) X rays as a reference modality. Cell survival curves were similar for modes (1) and (3), indicating the absence of a contact effect and the presence of a pronounced oxygen effect with oxygen enhancement ratios (OERs) of 2.8 and 2.9, respectively. In contrast, the oxygen effect was substantially smaller in mode (2) with an OER of 1.4. Under normal or restr…
Overview of the JET results with the ITER-like wall
Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Zeff (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. T…
Repetition suppression versus enhancement — it's quantity that matters
Upon repetition, certain stimuli induce reduced neural responses (i.e., repetition suppression), whereas others evoke stronger signals (i.e., repetition enhancement). It has been hypothesized that stimulus properties (e.g., visibility) determine the direction of the repetition effect. Here, we show that the very same stimuli can induce both repetition suppression and enhancement, whereby the only determining factor is the number of repetitions. Repeating the same, initially novel low-visible pictures of scenes for up to 5 times enhanced the blood oxygen level-dependent (BOLD) response in scene-selective areas, that is, the parahippocampal place area (PPA) and the transverse occipital sulcus…
Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X
The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate steady-state operation under plasma conditions relevant for a fusion power plant. Steady-state operation of a fusion device, on the one hand, requires the implementation of special technologies, giving rise to technical challenges during the design, fabrication and assembly of such a device. On the other hand, also the physics development of steady-state operation at high plasma performance poses a challeng…