0000000000199359

AUTHOR

Joachim Schessl

showing 4 related works from this author

MRI in DNM2-related centronuclear myopathy: Evidence for highly selective muscle involvement

2006

Dynamin 2 has recently been recognized as a causative gene for the autosomal dominant form of centronuclear myopathy (dominant centronuclear myopathy). Here we report an affected father and daughter with dynamin 2 related AD CNM with predominantly distal onset of weakness. In addition to the diagnostic central location of myonuclei the muscle biopsy also showed core-like structures. Muscle MRI in the lower leg revealed prominent involvement of the soleus, but also of the gastrocnemius and the tibialis anterior whereas in the thigh there was a consistent pattern of selective involvement of adductor longus, semimembranosus, biceps femoris, rectus femoris, and vastus intermedius with relative …

AdultMaleWeaknessThighBicepsDynamin IIHumansMedicineCentronuclear myopathyMuscle SkeletalGenetics (clinical)DynaminFamily HealthMuscle biopsymedicine.diagnostic_testbusiness.industryAnatomyMiddle Agedmusculoskeletal systemmedicine.diseaseMagnetic Resonance ImagingDNM2medicine.anatomical_structureNeurologyMutationPediatrics Perinatology and Child HealthFemaleNeurology (clinical)medicine.symptombusinessCentral core diseaseMyopathies Structural CongenitalNeuromuscular Disorders
researchProduct

Proteomic identification of FHL1 as the protein mutated in human reducing body myopathy

2007

Reducing body myopathy (RBM) is a rare disorder causing progressive muscular weakness characterized by aggresome-like inclusions in the myofibrils. Identification of genes responsible for RBM by traditional genetic approaches has been impossible due to the frequently sporadic occurrence in affected patients and small family sizes. As an alternative approach to gene identification, we used laser microdissection of intracytoplasmic inclusions identified in patient muscle biopsies, followed by nanoflow liquid chromatography-tandem mass spectrometry and proteomic analysis. The most prominent component of the inclusions was the Xq26.3-encoded four and a half LIM domain 1 (FHL1) protein, expresse…

Models MolecularProteomicsMolecular Sequence DataMuscle ProteinsBiologyTransfectionProteomicsInclusion bodiesMuscular DiseasesmedicineAmino Acid SequenceLaser capture microdissectionInclusion BodiesIntracellular Signaling Peptides and ProteinsCardiac muscleSkeletal muscleGenetic Diseases X-LinkedGeneral MedicineLIM Domain Proteinsmedicine.diseaseCongenital myopathyMolecular biologyFHL1medicine.anatomical_structureMutationMyofibrilResearch Article
researchProduct

Clinical, histological and genetic characterization of reducing body myopathy caused by mutations in FHL1

2008

We recently identified the X-chromosomal four and a half LIM domain gene FHL1 as the causative gene for reducing body myopathy, a disorder characterized by progressive weakness and intracytoplasmic aggregates in muscle that exert reducing activity on menadione nitro-blue-tetrazolium (NBT). The mutations detected in FHL1 affected highly conserved zinc coordinating residues within the second LIM domain and lead to the formation of aggregates when transfected into cells. Our aim was to define the clinical and morphological phenotype of this myopathy and to assess the mutational spectrum of FHL1 mutations in reducing body myopathy in a larger cohort of patients. Patients were ascertained via th…

AdultMaleWeaknessPathologymedicine.medical_specialtyMutation MissenseMuscle ProteinsBiologymedicine.disease_causeMuscular DiseasesBiopsymedicineHumansGenetic Predisposition to DiseaseMyopathyChildMicroscopy ImmunoelectronMuscle SkeletalMutationMuscle biopsymedicine.diagnostic_testIntracellular Signaling Peptides and ProteinsInfantGenetic Diseases X-LinkedOriginal ArticlesLIM Domain Proteinsmedicine.diseaseCongenital myopathyFHL1PedigreeChild PreschoolFemaleNeurology (clinical)medicine.symptomProgressive disease
researchProduct

Treatment of Duchenne muscular dystrophy with ciclosporin A: a randomised, double-blind, placebo-controlled multicentre trial.

2010

Summary Background Duchenne muscular dystrophy is a rare X-linked progressive disease characterised by loss of ambulation at about age 10 years, with death in early adulthood due to respiratory and cardiac insufficiency. Steroids are effective at slowing the progression of muscle weakness; however, their use is limited by side-effects, prompting the search for alternatives. We assessed the effect of ciclosporin A as monotherapy and in combination with intermittent prednisone for the treatment of ambulant patients with this disorder. Methods Our study was a parallel-group, placebo-controlled, double-blind, multicentre trial at trial sites of the German muscular dystrophy network, MD-NET, ove…

Malemedicine.medical_specialtyDuchenne muscular dystrophyMedizinPlacebolaw.invention03 medical and health sciences0302 clinical medicineRandomized controlled trialDouble-Blind MethodlawPrednisoneInternal medicinemedicineHumansMuscular dystrophyChild030304 developmental biology0303 health sciencesbusiness.industryMuscle weaknessmedicine.diseaseCiclosporin3. Good healthSurgeryClinical trialMuscular Dystrophy DuchenneReview Literature as TopicTreatment OutcomeCyclosporineNeurology (clinical)medicine.symptombusiness030217 neurology & neurosurgerymedicine.drugThe Lancet. Neurology
researchProduct