0000000000199840
AUTHOR
Jarkko Siltakoski
Recovering a variable exponent
We consider an inverse problem of recovering the non-linearity in the one dimensional variable exponent $p(x)$-Laplace equation from the Dirichlet-to-Neumann map. The variable exponent can be recovered up to the natural obstruction of rearrangements. The main technique is using the properties of a moment problem after reducing the inverse problem to determining a function from its $L^p$-norms.
Equivalence of viscosity and weak solutions for a $p$-parabolic equation
AbstractWe study the relationship of viscosity and weak solutions to the equation $$\begin{aligned} \smash {\partial _{t}u-\varDelta _{p}u=f(Du)}, \end{aligned}$$ ∂ t u - Δ p u = f ( D u ) , where $$p>1$$ p > 1 and $$f\in C({\mathbb {R}}^{N})$$ f ∈ C ( R N ) satisfies suitable assumptions. Our main result is that bounded viscosity supersolutions coincide with bounded lower semicontinuous weak supersolutions. Moreover, we prove the lower semicontinuity of weak supersolutions when $$p\ge 2$$ p ≥ 2 .
Equivalence of viscosity and weak solutions for the normalized $p(x)$-Laplacian
We show that viscosity solutions to the normalized $p(x)$-Laplace equation coincide with distributional weak solutions to the strong $p(x)$-Laplace equation when $p$ is Lipschitz and $\inf p>1$. This yields $C^{1,\alpha}$ regularity for the viscosity solutions of the normalized $p(x)$-Laplace equation. As an additional application, we prove a Rad\'o-type removability theorem.
An evolutionary Haar-Rado type theorem
AbstractIn this paper, we study variational solutions to parabolic equations of the type $$\partial _t u - \mathrm {div}_x (D_\xi f(Du)) + D_ug(x,u) = 0$$ ∂ t u - div x ( D ξ f ( D u ) ) + D u g ( x , u ) = 0 , where u attains time-independent boundary values $$u_0$$ u 0 on the parabolic boundary and f, g fulfill convexity assumptions. We establish a Haar-Rado type theorem: If the boundary values $$u_0$$ u 0 admit a modulus of continuity $$\omega $$ ω and the estimate $$|u(x,t)-u_0(\gamma )| \le \omega (|x-\gamma |)$$ | u ( x , t ) - u 0 ( γ ) | ≤ ω ( | x - γ | ) holds, then u admits the same modulus of continuity in the spatial variable.
p-Laplacen operaattorin ominaisarvo-ongelmasta
Tämän tutkielman tarkoitus on tutustua epälineaarisiin ominaisarvo-ongelmiin p-Laplacen operaattorin ominaisarvo-ongelman kautta. p-Laplacen operaattori on Laplacen operaattorin eräs yleistys ja tarkastelun kohteena oleva ominaisarvo-ongelma on Dirichletin ominaisarvo-ongelman yleistys. Tutkielmassa kerrataan ensin tarvittavia taustatietoja Sobolevin avaruuksista ja funktionaalianalyysistä, ja keskitytään sitten itse ongelmaan. Päätulokset koskevat ensimmäistä ominaisarvoa, ja ne ovat ensimmäisen ominaisarvon olemassaolo, ensimmäisen ominaisarvon karakterisointi Rayleighin osamäärän avulla, ensimmäisen ominaisfunktion yksinkertaisuus, ja se, että ensimmäinen ominaisfunktio on ainoa ominaisf…
Elliptic Harnack's inequality for a singular nonlinear parabolic equation in non‐divergence form
We prove an elliptic Harnack's inequality for a general form of a parabolic equation that generalizes both the standard parabolic -Laplace equation and the normalized version that has been proposed in stochastic game theory. This version of the inequality does not require the intrinsic waiting time and we get the estimate with the same time level on both sides of the inequality. peerReviewed
Hölder gradient regularity for the inhomogeneous normalized p(x)-Laplace equation
We prove the local gradient Hölder regularity of viscosity solutions to the inhomogeneous normalized p(x)-Laplace equation −Δp(x)Nu=f(x), where p is Lipschitz continuous, infp>1, and f is continuous and bounded. peerReviewed