0000000000201069
AUTHOR
Carmine Attanasio
Interface transparency and proximity effect in Nb/Cu triple layers realized by sputtering and molecular beam epitaxy
We have investigated, in the framework of the proximity effect theory, the interface transparency T between Nb and Cu in the case of high quality Nb/Cu trilayers fabricated by molecular beam epitaxy (MBE) and sputtering deposition techniques. The obtained T values do not seem to be strongly influenced by the fabrication methods but more by the intrinsic properties of the two metals; a slightly higher value for T has even been deduced for the MBE prepared samples. The proximity effect in these samples has also been studied in the presence of an external magnetic field. In the parallel configuration a significant shift towards lower values of the 2D–3D crossover temperature has been observed …
Microwave Properties of Nb/PdNi/Nb Trilayers
We combine wideband (1-20 GHz) Corbino disk and dielectric resonator (8.2 GHz) techniques to study the microwave properties in Nb/PdNi/Nb trilayers, grown by UHV dc magnetron sputtering, composed by Nb layers of nominal thickness $d_S$=15 nm, and a ferromagnetic PdNi layer of thickness $d_F$= 1, 2, 8 and 9 nm. We focus on the vortex state. Magnetic fields up to $H_{c2}$ were applied. The microwave resistivity at fixed $H/H_{c2}$ increases with $d_F$, eventually exceeding the Bardeen Stephen flux flow value.
Vortex motion in Nb/PdNi/Nb trilayers: new aspects in the flux flow state
We study the dynamics of vortex lines in Supercondutor/Ferromagnet/Superconductor (SFS) heterostructures at microwave frequencies. We have employed swept-frequency, Corbino-disk and resonant, dielectric-resonator techniques to obtain the field and temperature dependence of the vortex-state parameters. We concentrate here on the genuine flux-flow resistivity $\rho_{ff}$, that we access at subcritical currents using a sufficiently high driving frequency. We find that $\rho_{ff}$ does not follow the well-known Bardeen-Stephen model. Instead, it is well described by a full time-dependent Ginzburg-Landau expression at very thin F layer thickness, but changes to a previously unreported field-depe…
Quantum phase slips in superconducting Nb nanowire networks deposited on self-assembled Si templates
Robust porous silicon substrates were employed for generating interconnected networks of superconducting ultrathin Nb nanowires. Scanning electron microscopy analysis was performed to investigate the morphology of the samples, which constitute of polycrystalline single wires with grain size of about 10 nm. The samples exhibit nonzero resistance over a broad temperature range below the critical temperature, fingerprint of phase slippage processes. The transport data are satisfactory reproduced by models describing both thermal and quantum fluctuations of the superconducting order parameter in thin homogeneous superconducting wires.
Superconducting nanowire quantum interference device based on Nb ultrathin films deposited on self-assembled porous Si templates
Magnetoresistance oscillations were observed on networks of superconducting ultrathin Nb nanowires presenting evidences of either thermal or quantum activated phase slips. The magnetic transport data, discussed in the framework of different scenarios, reveal that the system behaves coherently in the temperature range where the contribution of the fluctuations is important.
Emergence of a metallic metastable phase induced by electrical current in Ca2RuO4
A comprehensive study of the behavior of the Mott insulator ${\mathrm{Ca}}_{2}{\mathrm{RuO}}_{4}$ under electrical current drive is performed by combining two experimental probes: the macroscopic electrical transport and the microscopic x-ray diffraction. The resistivity, $\ensuremath{\rho}$, versus electric current density, $J$, and temperature, $T,\ensuremath{\rho}(J,T)$, resistivity map is drawn. In particular, the metastable state, induced between the insulating and the metallic thermodynamic states by current biasing ${\mathrm{Ca}}_{2}{\mathrm{RuO}}_{4}$ single crystals, is investigated. Such an analysis, combined with the study of the resulting ${\mathrm{RuO}}_{6}$ octahedra energy le…
Transport properties of Nb/PdNi bilayers
The transport properties of superconductor/weak ferromagnet Nb/Pd86Ni14 sputtered bilayers have been studied. The critical thickness needed for superconductivity to develop is determined from the dependence of the transition temperature T-c on d(Nb). (c) 2005 Elsevier Ltd. All rights reserved.
Interface Transparency of Nb/Pd Layered Systems
We have investigated, in the framework of proximity effect theory, the interface transparency T of superconducting/normal metal layered systems which consist of Nb and high paramagnetic Pd deposited by dc magnetron sputtering. The obtained T value is relatively high, as expected by theoretical arguments. This leads to a large value of the ratio $d_{s}^{cr}/ \xi_{s}$ although Pd does not exhibit any magnetic ordering.
Nonlinear current-voltage characteristics due to quantum tunneling of phase slips in superconducting Nb nanowire networks
We report on the transport properties of an array of N about 30 interconnected Nb nanowires, grown by sputtering on robust porous Si substrates. The analyzed system exhibits a broad resistive transition in zero magnetic field, H, and highly nonlinear V(I) characteristics as a function of H which can be both consistently described by quantum tunneling of phase slips.
Superconducting properties of Nb thin films deposited on porous silicon templates
Porous silicon, obtained by electrochemical etching, has been used as a substrate for the growth of nanoperforated Nb thin films. The films, deposited by UHV magnetron sputtering on the porous Si substrates, inherited their structure made of holes of 5 or 10 nm diameter and of 10 to 40 nm spacing, which provide an artificial pinning structure. The superconducting properties were investigated by transport measurements performed in the presence of magnetic field for different film thickness and substrates with different interpore spacing. Perpendicular upper critical fields measurements present peculiar features such as a change in the H_c2(T) curvature and oscillations in the field dependenc…
Progress towards innovative and energy efficient logic circuits
Abstract The integration of superconductive nanowire logic memories and energy efficient computing Josephson logic is explored. Nanowire memories are based on the integration of switchable superconducting nanowires with a suitable magnetic material. These memories exploit the electro-thermal operation of the nanowires to efficiently store and read a magnetic state. In order to achieve proper memory operation a careful design of the nanowire assembly is necessary, as well as a proper choice of the magnetic material to be employed. At present several new superconducting logic families have been proposed, all tending to minimize the effect of losses in the digital Josephson circuits replacing …
Emergence of the stripe-domain phase in patterned permalloy films
The occurrence of stripe domains in ferromagnetic Permalloy (Py=Fe$_{20}$Ni$_{80}$) is a well known phenomenon which has been extensively observed and characterized. This peculiar magnetic configuration appears only in films with a thickness above a critical value ($d_{cr}$), which is strongly determined by the sputtering conditions (i.e. deposition rate, temperature, magnetic field). So far, $d_{cr}$ has usually been presented as the boundary between the homogeneous (H) and stripe-domains (SD) regime, respectively below and above $d_{cr}$. In this work we study the transition from the H to the SD regime in thin films and microstructured bridges of Py with different thicknesses. We find the…