0000000000201554

AUTHOR

Dasiel O. Borroto-escuela

0000-0002-5736-373x

showing 11 related works from this author

Fibroblast Growth Factor Receptor 1– 5-Hydroxytryptamine 1A Heteroreceptor Complexes and Their Enhancement of Hippocampal Plasticity

2011

Background The hippocampus and its 5-hydroxytryptamine transmission plays an important role in depression related to its involvement in limbic circuit plasticity. Methods The analysis was made with bioluminescence resonance energy transfer, co-immunoprecipitation, in situ proximity ligation assay, binding assay, in cell western and the forced swim test. Results Using bioluminescence resonance energy transfer analysis, fibroblast growth factor receptor 1 (FGFR1)-5-hydroxytryptamine 1A (5-HT1A) receptor complexes have been demonstrated and their specificity and agonist modulation characterized. Their presence based on co-immunoprecipitation and proximity ligation assay has also been indicated…

Agonistmedicine.medical_specialtyReceptor complexmedicine.drug_classProximity ligation assayBiologyHippocampal formationTransfectionHeteroreceptorSettore BIO/09 - FisiologiaHippocampusRats Sprague-DawleyGrowth factor receptorInternal medicineFluorescence Resonance Energy TransfermedicineAnimalsHumansImmunoprecipitationReceptor Fibroblast Growth Factor Type 1Enzyme InhibitorsRNA Small InterferingCells CulturedBiological PsychiatryNeurons8-Hydroxy-2-(di-n-propylamino)tetralinNeuronal PlasticityDose-Response Relationship DrugFibroblast growth factor receptor 1Computational BiologyAllosteric modulation depression fibroblast growth factor receptor heteroreceptor neuronal plasticity serotonin receptorsRatsSerotonin Receptor AgonistsCell biologyEndocrinologyAnimals NewbornFibroblast growth factor receptorReceptor Serotonin 5-HT1AFibroblast Growth Factor 2PeptidesSignal TransductionBiological Psychiatry
researchProduct

Serotonin Heteroreceptor Complexes and Their Integration of Signals in Neurons and Astroglia—Relevance for Mental Diseases

2021

The heteroreceptor complexes present a novel biological principle for signal integration. These complexes and their allosteric receptor–receptor interactions are bidirectional and novel targets for treatment of CNS diseases including mental diseases. The existence of D2R-5-HT2AR heterocomplexes can help explain the anti-schizophrenic effects of atypical antipsychotic drugs not only based on blockade of 5-HT2AR and of D2R in higher doses but also based on blocking the allosteric enhancement of D2R protomer signaling by 5-HT2AR protomer activation. This research opens a new understanding of the integration of DA and 5-HT signals released from DA and 5-HT nerve terminal networks. The biologica…

0301 basic medicineReviewheteroreceptor complexesTropomyosin receptor kinase BReceptor tyrosine kinasechemistry.chemical_compound0302 clinical medicineG protein-coupled receptorsserotonin receptorsReceptor Serotonin 5-HT2ABiology (General)astrogliabiologyChemistryMental DisordersBrainGeneral MedicineAntidepressive AgentsdepressionG protein-coupled receptors; astroglia; depression; heteroreceptor complexes; rapid antidepressant drugs; receptor tyrosine kinase; serotonin receptors.medicine.symptomAntipsychotic AgentsSerotonergic NeuronsSignal TransductionProto-oncogene tyrosine-protein kinase Srcserotonin receptorheteroreceptor complexeQH301-705.5Astroglia; Depression; G protein-coupled receptors; Heteroreceptor complexes; Rapid antidepressant drugs; Receptor tyrosine kinase; Serotonin receptors;Allosteric regulationserotonin receptors heteroreceptor complexes depression astroglia receptor tyrosine kinase rapid antidepressant drugs G protein-coupled receptors.depression astroglia receptor tyrosine kinase rapid antidepressant drugs G protein-coupled receptorsHeteroreceptorNO03 medical and health sciencesmedicineAnimalsHumansReceptor Fibroblast Growth Factor Type 1rapid antidepressant drugsG protein-coupled receptorReceptors Dopamine D2Dopaminergic NeuronsTyrosine phosphorylationReceptor Cross-TalkReceptor Galanin Type 1Receptor Galanin Type 2030104 developmental biologyMechanism of actionAstrocytesreceptor tyrosine kinasebiology.proteinReceptors Serotonin 5-HT1Neuroscience030217 neurology & neurosurgeryCells
researchProduct

Increase of the FGFR1 signaling in the FGFR1-5-HT1A heteroreceptor complex in midbrain raphe 5-HT neuron systems via allosteric receptor-receptor int…

2015

The ascending midbrain 5-HT neurons known to contain 5-HT1A autoreceptors may be dysregulated in depression due to a reduced trophic support. New findings show existence of FGFR1-5-HT1A heteroreceptor complexes in the rat hippocampus with a partial characterization of their interface and in midbrain raphe 5-HT nerve cells. With in situ Proximity Ligation Assay (PLA) and supported by co-location of the FGFR1 and 5-HT1A immunoreactivities in midbrain raphe 5-HT cells, evidence for the existence of FGFR1-5-HT1A heteroreceptor complexes were obtained in the dorsal and median raphe nuclei of the Sprague–Dawley rat. Their existence in the rat medullary raphe RN33B cell cultures was also establish…

Agonistmedicine.medical_specialtymedicine.drug_classheteroreceptor complexesBiologyHeteroreceptorMidbrain03 medical and health sciences0302 clinical medicineDorsal raphe nucleusInternal medicinemedicineMultidisciplinaryRapheReceptor-receptor interactionCell biologyEndocrinologymedicine.anatomical_structureserotonin 5-HT1A receptornervous system030220 oncology & carcinogenesisPoster Presentationfibroblast growth factor receptorAutoreceptorNeuron030217 neurology & neurosurgerySpringerPlus
researchProduct

Enhancement of the FGFR1 signaling in the FGFR1-5-HT1A heteroreceptor complex in midbrain raphe 5-HT neuron systems. Relevance for neuroplasticity an…

2015

New findings show existence of FGFR1-5-HT1A heteroreceptor complexes in 5-HT nerve cells of the dorsal and median raphe nuclei of the rat midbrain and hippocampus. Synergistic receptor-receptor interactions in these receptor complexes indicated their enhancing role in hippocampal plasticity. The existence of FGFR1-5-HT1A heteroreceptor complexes also in midbrain raphe 5-HT nerve cells open up the possibility that antidepressant drugs by increasing extracellular 5-HT levels can cause an activation of the FGF-2/FGFR1 mechanism in these nerve cells as well. Therefore, the agonist modulation of the FGFR1-5-HT1A heteroreceptor complexes and their specific role is now determined in rat medullary …

AgonistSerotoninmedicine.medical_specialtymedicine.drug_classCellular differentiationBiophysicsHeteroreceptor complexBiologyHeteroreceptorBiochemistrySettore BIO/09 - FisiologiaCell LineMidbrainDorsal raphe nucleusMesencephalonInternal medicinemedicineAnimalsSerotonin 5-HT1A receptorReceptor Fibroblast Growth Factor Type 1Protein Interaction MapsPhosphorylationExtracellular Signal-Regulated MAP KinasesMolecular BiologyNeurons8-Hydroxy-2-(di-n-propylamino)tetralinNeuronal PlasticityRapheDepressionAnimalExtracellular Signal-Regulated MAP KinaseCell BiologySerotonin 5-HT1 Receptor AgonistsNeuronFibroblast growth factor receptorRatsEndocrinologymedicine.anatomical_structurenervous systemReceptor Serotonin 5-HT1AAutoreceptorRatFibroblast Growth Factor 2Serotonin 5-HT1 Receptor AgonistNeuronDimerizationNeuroscienceDepression; Dimerization; Fibroblast growth factor receptor; Heteroreceptor complex; Neuronal plasticity; Serotonin 5-HT1A receptor; 8-Hydroxy-2-(di-n-propylamino)tetralin; Animals; Cell Line; Extracellular Signal-Regulated MAP Kinases; Fibroblast Growth Factor 2; Mesencephalon; Neurons; Phosphorylation; Rats; Receptor Fibroblast Growth Factor Type 1; Receptor Serotonin 5-HT1A; Serotonin; Serotonin 5-HT1 Receptor Agonists; Neuronal Plasticity; Protein Interaction Maps
researchProduct

Speaker 4: Dasiel Borroto – Escuela, Sweden

2016

PharmacologyAbstractsPsychiatry and Mental healthSpeaker AbstractsPharmacology (medical)SociologyLinguisticsInternational Journal of Neuropsychopharmacology
researchProduct

Dual disruption of aldehyde dehydrogenases 1 and 3 promotes functional changes in the glutathione redox system and enhances chemosensitivity in nonsm…

2020

AbstractAldehyde dehydrogenases (ALDHs) are multifunctional enzymes that oxidize diverse endogenous and exogenous aldehydes. We conducted a meta-analysis based on The Cancer Genome Atlas and Gene Expression Omnibus data and detected genetic alterations in ALDH1A1, ALDH1A3, or ALDH3A1, 86% of which were gene amplification or mRNA upregulation, in 31% of nonsmall cell lung cancers (NSCLCs). The expression of these isoenzymes impacted chemoresistance and shortened survival times in patients. We hypothesized that these enzymes provide an oxidative advantage for the persistence of NSCLC. To test this hypothesis, we used genetic and pharmacological approaches with DIMATE, an irreversible inhibito…

Male0301 basic medicineCancer ResearchLung NeoplasmsCell- och molekylärbiologiCellAldehyde dehydrogenaseKaplan-Meier EstimateMicechemistry.chemical_compound0302 clinical medicineCarcinoma Non-Small-Cell LungAntineoplastic Combined Chemotherapy ProtocolsCytotoxicityMiddle AgedAldehyde OxidoreductasesGlutathioneCancer metabolismUp-Regulation3. Good healthCancer therapeutic resistancemedicine.anatomical_structureAlkynes030220 oncology & carcinogenesisFemale[SDV.CAN]Life Sciences [q-bio]/CancerBiologyIsozymeAldehyde Dehydrogenase 1 FamilyArticle03 medical and health sciencesTargeted therapiesDownregulation and upregulationCell Line TumorGeneticsmedicineAnimalsHumansSulfhydryl CompoundsLung cancerMolecular BiologyAgedCancer och onkologiGene AmplificationRetinal DehydrogenaseGlutathioneAldehyde Dehydrogenasemedicine.diseaseXenograft Model Antitumor AssaysALDH1A1030104 developmental biologychemistryDrug Resistance NeoplasmCancer and Oncologybiology.proteinCancer researchCisplatinReactive Oxygen SpeciesCell and Molecular Biologynonsmall cell lung cancer
researchProduct

The existence of FGFR1-5-HT1A receptor heterocomplexes in midbrain 5-HT neurons of the rat: relevance for neuroplasticity.

2012

The ascending midbrain 5-HT neurons to the forebrain may be dysregulated in depression and have a reduced trophic support. Within situproximity ligation assay (PLA) and supported by coimmunoprecipitation and colocation of the FGFR1 and 5-HT1A immunoreactivities in the midbrain raphe cells, evidence for the existence of FGFR1–5-HT1A receptor heterocomplexes in the dorsal and median raphe nuclei of the Sprague Dawley rat as well as in the rat medullary raphe RN33B cells has been obtained. Especially after combined FGF-2 and 8-OH-DPAT treatment, a marked and significant increase in PLA clusters was found in the RN33B cells. Similar results were reached with the FRET technique in HEK293T cells,…

Retractedmedicine.medical_specialtySerotonin receptorsEncèfalSettore BIO/11 - Biologia MolecolareBiologySettore BIO/09 - FisiologiaReceptors de serotoninaMidbrainInternal medicineRatesmedicineReceptor5-HT receptorNeuronal Plasticity Receptor Fibroblast Growth Factor Receptor Serotonin 5-HT1A Serotonergic Neurons SerotoninRapheGeneral NeuroscienceEncephalonFibroblastsRatsEndocrinologymedicine.anatomical_structurenervous systemForebrainAutoreceptor5-HT1A receptorNeuron
researchProduct

Evidence for the existence of FGFR1-5-HT1A heteroreceptor complexes in the midbrain raphe 5-HT system.

2015

The ascending midbrain 5-HT neurons known to contain 5-HT1A autoreceptors may be dysregulated in depression due to a reduced trophic support. With in situ proximity ligation assay (PLA) and supported by co-location of the FGFR1 and 5-HT1A immunoreactivities in midbrain raphe 5-HT cells, evidence for the existence of FGFR1–5-HT1A heteroreceptor complexes were obtained in the dorsal and median raphe nuclei of the Sprague–Dawley rat. Their existence in the rat medullary raphe RN33B cell cultures was also established. After combined FGF-2 and 8-OH-DPAT treatment, a marked and significant increase in PLA positive clusters was found in the RN33B cells. Similar results were reached upon coactivati…

Malemedicine.medical_specialtySerotoninG-protein-coupled receptorReceptor tyrosine kinaseBiophysicsHeteroreceptor complexProximity ligation assayBiologyHeteroreceptorBiochemistryMidbrainRats Sprague-DawleyG-protein-coupled receptors; Receptor tyrosine kinases; Fibroblast growth factor receptor 1; Serotonin receptors; Heteroreceptor complex; DimerizationInternal medicinemedicineFluorescence Resonance Energy TransferAnimalsHumansReceptor Fibroblast Growth Factor Type 1Serotonin receptorMolecular Biology5-HT receptorNeurons8-Hydroxy-2-(di-n-propylamino)tetralinRapheMidbrain Raphe NucleiCell BiologyFibroblast growth factor receptor 1Cell biologyRatsmedicine.anatomical_structureEndocrinologyHEK293 Cellsnervous systemGene Expression RegulationReceptor Serotonin 5-HT1AAutoreceptorFibroblast Growth Factor 2NeuronRaphe nucleiPeptidesDimerizationProtein BindingBiochemical and biophysical research communications
researchProduct

Detection of Fibroblast Growth Factor Receptor 1 (FGFR1) Transactivation by Muscarinic Acetylcholine Receptors (mAChRs) in Primary Neuronal Hippocamp…

2018

In addition to their canonical intracellular signals involved in the regulation of neuronal plasticity, G-protein coupled receptors can also rapidly transactivate tyrosine kinase receptors and their downstream intracellular signaling in absence of specific ligands. Here we describe our protocol for dissociating and maintaining hippocampal primary neurons in high- and low-density culture, followed by a description of methods employed to evaluate neurite outgrowth and protein phosphorylation associated with fibroblast growth factor receptor 1 transactivation by muscarinic acetylcholine receptors. Our goal was to provide the reader with detailed protocols of the abovementioned techniques and t…

TransactivationChemistryFibroblast growth factor receptor 1Tyrosine kinase receptorHippocampal formationHippocampusSettore BIO/09 - FisiologiaFibroblast growth factor receptorWestern blottingCell biologyMuscarinic acetylcholine receptorPrimary neuronal cultureTransactivationNeurite growthMuscarinic acetylcholine receptorPhosphorylationReceptor–receptor interactions
researchProduct

Agonist-induced formation of FGFR1 homodimers and signaling differ among members of the FGF family

2011

Fibroblast growth factor receptor 1 (FGFR1) is known to be activated by homodimerization in the presence of both the FGF agonist ligand and heparan sulfate glycosaminoglycan. FGFR1 homodimers in turn trigger a variety of downstream signaling cascades via autophosphorylation of tyrosine residues in the cytoplasmic domain of FGFR1. By means of Bioluminescence Energy Resonance Transfer (BRET) as a sign of FGFR1 homodimerization, we evaluated in HEK293T cells the effects of all known FGF agonist ligands on homodimer formation. A significant correlation between BRET(2) signaling and ERK1/2 phosphorylation was observed, leading to a further characterization of the binding and signaling properties…

AgonistMAPK/ERK pathwaymedicine.drug_classBiophysicsSettore BIO/11 - Biologia MolecolareBiologyLigandsFibroblast growth factorSettore BIO/09 - FisiologiaBiochemistrychemistry.chemical_compoundFluorescence Resonance Energy TransfermedicineHumansReceptor Fibroblast Growth Factor Type 1Molecular BiologyMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3Fibroblast growth factor receptor 1HEK 293 cellsAutophosphorylationCell BiologyHeparan sulfateFibroblast growth factors FGFR1 Homodimerization BRET MAPKCell biologyFibroblast Growth Factorsstomatognathic diseasesHEK293 CellschemistrySettore BIO/14 - FarmacologiaPhosphorylationHeparitin SulfateProtein MultimerizationBiochemical and Biophysical Research Communications
researchProduct

Detection, Analysis, and Quantification of GPCR Homo- and Heteroreceptor Complexes in Specific Neuronal Cell Populations Using the In Situ Proximity …

2018

GPCR’s receptosome operates via coordinated changes between the receptor expression, their modifications and interactions between each other. Perturbation in specific heteroreceptor complexes and/or their balance/equilibrium with other heteroreceptor complexes and corresponding homoreceptor complexes is considered to have a role in pathogenic mechanisms. Such mechanisms lead to mental and neurological diseases, including drug addiction, depression, Parkinson’s disease, and schizophrenia. To understand the associations of GPCRs and to unravel the global picture of their receptor–receptor interactions in the brain, different experimental detection techniques for receptor–receptor interactions…

0301 basic medicineIn situIn situ proximity ligation assayChemistryCellProximity ligation assayHeteroreceptorSettore BIO/09 - FisiologiaImmunohistochemistryReceptor–receptor interactionStoichiometryNOG protein-coupled receptors Immunohistochemistry In situ proximity ligation assay Heteroreceptor complexes Dimerization Receptor–receptor interaction Stoichiometry03 medical and health sciences030104 developmental biology0302 clinical medicinemedicine.anatomical_structureG protein-coupled receptorsBiophysicsmedicineHeteroreceptor complexesDimerization030217 neurology & neurosurgeryG protein-coupled receptor
researchProduct