6533b823fe1ef96bd127eb4b

RESEARCH PRODUCT

Dual disruption of aldehyde dehydrogenases 1 and 3 promotes functional changes in the glutathione redox system and enhances chemosensitivity in nonsmall cell lung cancer

Régis CostelloGuillaume MartinRocio Rebollido-riosSara Sanchez-redondoWilber Romero-fernandezElena GonzálezGeoffroy VentonGuy FournetMileidys Perez-aleaCarmela Iglesias I FelipBarbara Di StefanoDasiel O. Borroto-escuelaReinier Penarroche-díazIsmail Ceylan

subject

Male0301 basic medicineCancer ResearchLung NeoplasmsCell- och molekylärbiologiCellAldehyde dehydrogenaseKaplan-Meier EstimateMicechemistry.chemical_compound0302 clinical medicineCarcinoma Non-Small-Cell LungAntineoplastic Combined Chemotherapy ProtocolsCytotoxicityMiddle AgedAldehyde OxidoreductasesGlutathioneCancer metabolismUp-Regulation3. Good healthCancer therapeutic resistancemedicine.anatomical_structureAlkynes030220 oncology & carcinogenesisFemale[SDV.CAN]Life Sciences [q-bio]/CancerBiologyIsozymeAldehyde Dehydrogenase 1 FamilyArticle03 medical and health sciencesTargeted therapiesDownregulation and upregulationCell Line TumorGeneticsmedicineAnimalsHumansSulfhydryl CompoundsLung cancerMolecular BiologyAgedCancer och onkologiGene AmplificationRetinal DehydrogenaseGlutathioneAldehyde Dehydrogenasemedicine.diseaseXenograft Model Antitumor AssaysALDH1A1030104 developmental biologychemistryDrug Resistance NeoplasmCancer and Oncologybiology.proteinCancer researchCisplatinReactive Oxygen SpeciesCell and Molecular Biologynonsmall cell lung cancer

description

AbstractAldehyde dehydrogenases (ALDHs) are multifunctional enzymes that oxidize diverse endogenous and exogenous aldehydes. We conducted a meta-analysis based on The Cancer Genome Atlas and Gene Expression Omnibus data and detected genetic alterations in ALDH1A1, ALDH1A3, or ALDH3A1, 86% of which were gene amplification or mRNA upregulation, in 31% of nonsmall cell lung cancers (NSCLCs). The expression of these isoenzymes impacted chemoresistance and shortened survival times in patients. We hypothesized that these enzymes provide an oxidative advantage for the persistence of NSCLC. To test this hypothesis, we used genetic and pharmacological approaches with DIMATE, an irreversible inhibitor of ALDH1/3. DIMATE showed cytotoxicity in 73% of NSCLC cell lines tested and demonstrated antitumor activity in orthotopic xenografts via hydroxynonenal-protein adduct accumulation, GSTO1-mediated depletion of glutathione and increased H2O2. Consistent with this result, ALDH1/3 disruption synergized with ROS-inducing agents or glutathione synthesis inhibitors to trigger cell death. In lung cancer xenografts with high to moderate cisplatin resistance, combination treatment with DIMATE promoted strong synergistic responses with tumor regression. These results indicate that NSCLCs with increased expression of ALDH1A1, ALDH1A3, or ALDH3A1 may be targeted by strategies involving inhibitors of these isoenzymes as monotherapy or in combination with chemotherapy to overcome patient-specific drug resistance.

10.1038/s41388-020-1184-9http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-425117