0000000000201574
AUTHOR
Teresa Buxo
Resting-state EEG reveals four subphenotypes of amyotrophic lateral sclerosis
Abstract Amyotrophic lateral sclerosis is a devastating disease characterized primarily by motor system degeneration, with clinical evidence of cognitive and behavioural change in up to 50% of cases. Amyotrophic lateral sclerosis is both clinically and biologically heterogeneous. Subgrouping is currently undertaken using clinical parameters, such as site of symptom onset (bulbar or spinal), burden of disease (based on the modified El Escorial Research Criteria) and genomics in those with familial disease. However, with the exception of genomics, these subcategories do not take into account underlying disease pathobiology, and are not fully predictive of disease course or prognosis. Recently…
Dysfunction of attention switching networks in amyotrophic lateral sclerosis
Objective To localise and characterise changes in cognitive networks in Amyotrophic Lateral Sclerosis (ALS) using source analysis of mismatch negativity (MMN) waveforms. Rationale The MMN waveform has an increased average delay in ALS. MMN has been attributed to change detection and involuntary attention switching. This therefore indicates pathological impairment of the neural network components which generate these functions. Source localisation can mitigate the poor spatial resolution of sensor-level EEG analysis by associating the sensor-level signals to the contributing brain sources. The functional activity in each generating source can therefore be individually measured and investigat…
Patterned functional network disruption in amyotrophic lateral sclerosis
Abstract Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease primarily affecting motor function, with additional evidence of extensive nonmotor involvement. Despite increasing recognition of the disease as a multisystem network disorder characterised by impaired connectivity, the precise neuroelectric characteristics of impaired cortical communication remain to be fully elucidated. Here, we characterise changes in functional connectivity using beamformer source analysis on resting‐state electroencephalography recordings from 74 ALS patients and 47 age‐matched healthy controls. Spatiospectral characteristics of network changes in the ALS patient group were quantifi…
Localization of Brain Networks Engaged by the Sustained Attention to Response Task Provides Quantitative Markers of Executive Impairment in Amyotrophic Lateral Sclerosis
Abstract Objective: To identify cortical regions engaged during the sustained attention to response task (SART) and characterize changes in their activity associated with the neurodegenerative condition amyotrophic lateral sclerosis (ALS). Methods: High-density electroencephalography (EEG) was recorded from 33 controls and 23 ALS patients during a SART paradigm. Differences in associated event-related potential peaks were measured for Go and NoGo trials. Sources active during these peaks were localized, and ALS-associated differences were quantified. Results: Go and NoGo N2 and P3 peak sources were localized to the left primary motor cortex, bilateral dorsolateral prefrontal cortex (DLPFC),…
Altered supraspinal motor networks in survivors of poliomyelitis: A cortico-muscular coherence study.
Abstract Objective Poliomyelitis results in changes to the anterior horn cell. The full extent of cortical network changes in the motor physiology of polio survivors has not been established. Our aim was to investigate how focal degeneration of the lower motor neurons (LMN) in infancy/childhood affects motor network connectivity in adult survivors of polio. Methods Surface electroencephalography (EEG) and electromyography (EMG) were recorded during an isometric pincer grip task in 25 patients and 11 healthy controls. Spectral signal analysis of cortico-muscular (EEG-EMG) coherence (CMC) was used to identify the cortical regions that are functionally synchronous and connected to the peripher…
Non-Parametric Rank Statistics for Spectral Power and Coherence
AbstractDespite advances in multivariate spectral analysis of neural signals, the statistical inference of measures such as spectral power and coherence in practical and real-life scenarios remains a challenge. The non-normal distribution of the neural signals and presence of artefactual components make it difficult to use the parametric methods for robust estimation of measures or to infer the presence of specific spectral components above the chance level. Furthermore, the bias of the coherence measures and their complex statistical distributions are impediments in robust statistical comparisons between 2 different levels of coherence. Non-parametric methods based on the median of auto-/c…