0000000000202320

AUTHOR

Pablo Morcillo-pallarés

0000-0002-0970-9492

Global Sensitivity Analysis of Leaf-Canopy-Atmosphere RTMs: Implications for Biophysical Variables Retrieval from Top-of-Atmosphere Radiance Data.

Knowledge of key variables driving the top of the atmosphere (TOA) radiance over a vegetated surface is an important step to derive biophysical variables from TOA radiance data, e.g., as observed by an optical satellite. Coupled leaf-canopy-atmosphere Radiative Transfer Models (RTMs) allow linking vegetation variables directly to the at-sensor TOA radiance measured. Global Sensitivity Analysis (GSA) of RTMs enables the computation of the total contribution of each input variable to the output variance. We determined the impacts of the leaf-canopy-atmosphere variables into TOA radiance using the GSA to gain insights into retrievable variables. The leaf and canopy RTM PROSAIL was coupled with…

research product

Quantifying the Robustness of Vegetation Indices through Global Sensitivity Analysis of Homogeneous and Forest Leaf-Canopy Radiative Transfer Models

Vegetation indices (VIs) are widely used in optical remote sensing to estimate biophysical variables of vegetated surfaces. With the advent of spectroscopy technology, spectral bands can be combined in numerous ways to extract the desired information. This resulted in a plethora of proposed indices, designed for a diversity of applications and research purposes. However, it is not always clear whether they are sensitive to the variable of interest while at the same time, responding insensitive to confounding factors. Hence, to be able to quantify the robustness of VIs, a systematic evaluation is needed, thereby introducing a widest possible variety of biochemical and structural heterogeneit…

research product

Gaussian Processes Retrieval of LAI from Sentinel-2 Top-of-Atmosphere Radiance Data

Abstract Retrieval of vegetation properties from satellite and airborne optical data usually takes place after atmospheric correction, yet it is also possible to develop retrieval algorithms directly from top-of-atmosphere (TOA) radiance data. One of the key vegetation variables that can be retrieved from at-sensor TOA radiance data is leaf area index (LAI) if algorithms account for variability in atmosphere. We demonstrate the feasibility of LAI retrieval from Sentinel-2 (S2) TOA radiance data (L1C product) in a hybrid machine learning framework. To achieve this, the coupled leaf-canopy-atmosphere radiative transfer models PROSAIL-6SV were used to simulate a look-up table (LUT) of TOA radi…

research product

Retrieving and Validating Leaf and Canopy Chlorophyll Content at Moderate Resolution: A Multiscale Analysis with the Sentinel-3 OLCI Sensor

ESA’s Eighth Earth Explorer mission “FLuorescence EXplorer” (FLEX) will be dedicated to the global monitoring of the chlorophyll fluorescence emitted by vegetation. In order to properly interpret the measured fluorescence signal, essential vegetation variables need to be retrieved concomitantly. FLEX will fly in tandem formation with Sentinel-3 (S3), which conveys the Ocean and Land Color Instrument (OLCI) that is designed to characterize the atmosphere and the terrestrial vegetation at a spatial resolution of 300 m. In support of FLEX’s preparatory activities, this paper presents a first validation exercise of OLCI vegetation products against in situ data coming from the 2018 FLEXSense cam…

research product

Emulation of Sun-Induced Fluorescence from Radiance Data Recorded by the HyPlant Airborne Imaging Spectrometer

The retrieval of sun-induced fluorescence (SIF) from hyperspectral radiance data grew to maturity with research activities around the FLuorescence EXplorer satellite mission FLEX, yet full-spectrum estimation methods such as the spectral fitting method (SFM) are computationally expensive. To bypass this computational load, this work aims to approximate the SFM-based SIF retrieval by means of statistical learning, i.e., emulation. While emulators emerged as fast surrogate models of simulators, the accuracy-speedup trade-offs are still to be analyzed when the emulation concept is applied to experimental data. We evaluated the possibility of approximating the SFM-like SIF output directly based…

research product

Optimizing Gaussian Process Regression for Image Time Series Gap-Filling and Crop Monitoring

Image processing entered the era of artificial intelligence, and machine learning algorithms emerged as attractive alternatives for time series data processing. Satellite image time series processing enables crop phenology monitoring, such as the calculation of start and end of season. Among the promising algorithms, Gaussian process regression (GPR) proved to be a competitive time series gap-filling algorithm with the advantage of, as developed within a Bayesian framework, providing associated uncertainty estimates. Nevertheless, the processing of time series images becomes computationally inefficient in its standard per-pixel usage, mainly for GPR training rather than the fitting step. To…

research product

Approximating Empirical Surface Reflectance Data through Emulation: Opportunities for Synthetic Scene Generation

Collection of spectroradiometric measurements with associated biophysical variables is an essential part of the development and validation of optical remote sensing vegetation products. However, their quality can only be assessed in the subsequent analysis, and often there is a need for collecting extra data, e.g., to fill in gaps. To generate empirical-like surface reflectance data of vegetated surfaces, we propose to exploit emulation, i.e., reconstruction of spectral measurements through statistical learning. We evaluated emulation against classical interpolation methods using an empirical field dataset with associated hyperspectral spaceborne CHRIS and airborne HyMap reflectance spectra…

research product

DATimeS: A machine learning time series GUI toolbox for gap-filling and vegetation phenology trends detection

Abstract Optical remotely sensed data are typically discontinuous, with missing values due to cloud cover. Consequently, gap-filling solutions are needed for accurate crop phenology characterization. The here presented Decomposition and Analysis of Time Series software (DATimeS) expands established time series interpolation methods with a diversity of advanced machine learning fitting algorithms (e.g., Gaussian Process Regression: GPR) particularly effective for the reconstruction of multiple-seasons vegetation temporal patterns. DATimeS is freely available as a powerful image time series software that generates cloud-free composite maps and captures seasonal vegetation dynamics from regula…

research product

Quantifying vegetation biophysical variables from the Sentinel-3/FLEX tandem mission: Evaluation of the synergy of OLCI and FLORIS data sources

The ESA’s forthcoming FLuorescence EXplorer (FLEX) mission is dedicated to the global monitoring of the vegetation’s chlorophyll fluorescence by means of an imaging spectrometer, FLORIS. In order to properly interpret the fluorescence signal in relation to photosynthetic activity, essential vegetation variables need to be retrieved concomitantly. FLEX will fly in tandem with Sentinel-3 (S3), which conveys the Ocean and Land Colour Instrument (OLCI) that is designed to characterize the atmosphere and the terrestrial vegetation at a spatial resolution of 300 m. In this work we present the retrieval models of four essential biophysical variables: (1) Leaf Area Index (LAI), (2) leaf chlorophyll…

research product