6533b861fe1ef96bd12c44fa

RESEARCH PRODUCT

DATimeS: A machine learning time series GUI toolbox for gap-filling and vegetation phenology trends detection

Eatidal AminJuan Pablo Rivera-caicedoPablo Morcillo-pallarésLuca PipiaSantiago BeldaCharlotte De GraveJochem Verrelst

subject

Environmental Engineering010504 meteorology & atmospheric sciencesComputer science0211 other engineering and technologies02 engineering and technologyMachine learningcomputer.software_genre01 natural sciencesArticleSoftwareKrigingTime seriesLeaf area index021101 geological & geomatics engineering0105 earth and related environmental sciencesSeries (mathematics)business.industryEcological ModelingVegetation15. Life on landMissing dataArtificial intelligencebusinesscomputerSoftwareInterpolation

description

Abstract Optical remotely sensed data are typically discontinuous, with missing values due to cloud cover. Consequently, gap-filling solutions are needed for accurate crop phenology characterization. The here presented Decomposition and Analysis of Time Series software (DATimeS) expands established time series interpolation methods with a diversity of advanced machine learning fitting algorithms (e.g., Gaussian Process Regression: GPR) particularly effective for the reconstruction of multiple-seasons vegetation temporal patterns. DATimeS is freely available as a powerful image time series software that generates cloud-free composite maps and captures seasonal vegetation dynamics from regular or irregular satellite time series. This work describes the main features of DATimeS, and provides a demonstration case using Sentinel-2 Leaf Area Index time series data over a Spanish site. GPR resulted as an optimum fitting algorithm with most accurate gap-filling performance and associated uncertainties. DATimeS further quantified LAI fluctuations among multiple crop seasons and provided phenological indicators for specific crop types.

https://doi.org/10.1016/j.envsoft.2020.104666