0000000000202675

AUTHOR

David García-sala

Mitochondria from females exhibit higher antioxidant gene expression and lower oxidative damage than males

We have investigated the differential mitochondrial oxidative stress between males and females to understand the molecular mechanisms enabling females to live longer than males. Mitochondria are a major source of free radicals in cells. Those from female rats generate half the amount of peroxides than those of males. This does not occur in ovariectomized animals. Estrogen replacement therapy prevents the effect of ovariectomy. Mitochondria from females have higher levels of reduced glutathione than those from males. Those from ovariectomized rats have similar levels to males, and estrogen therapy prevents the fall in glutathione levels that occurs in ovariectomized animals. Oxidative damage…

research product

Mitochondrial damage in aging and apoptosis.

: Mitochondria are essential to cellular aging, and free radical production by mitochondria is increased with aging. The rate of oxidant production by mitochondria correlates inversely with maximal life span of species. In many species, females live longer than males. We report that mitochondrial oxidant production by females is significantly lower than that of males. However, mitochondria from ovariectomized females have a similar oxidant production as those of males. Thus, gender difference in life span can be explained, at least in part, by different oxidant generation by mitochondria. Administration of antioxidants, such as vitamins C and E, or a Ginkgo biloba extract, protects against …

research product