Development of artificial neural network for condition assessment of bridges based on hybrid decision making method – Feasibility study
Abstract Managing a bridge at an appropriate level of reliability requires knowledge of its technical condition, which is decisive in terms of maintenance and repair activities. This is a multi-criteria decision-making problem which results from the need to allocate limited financial resources to this work. Although many calculation models have been suggested in published sources, none of them has ever met these requirements. The algorithm presented by the authors allows for the assessment of any number of bridges, taking into account the diversity of solutions in terms of materials and structures, and can provide a solution to this problem. This hybrid calculation model, combining the modi…
The Study of Dynamic Objects Identification Algorithms Based on Anisotropic Properties of Generalized Amplitude-Phase Images
The article presents some results of dynamical objects identification technology based on coincidence matrixes of templates and tested objects’ amplitude-phase images (APIm) calculated with discrete Hilbert transforms (DHT). DHT algorithms are modeled on basis of isotropic (HTI), anisotropic (HTA), generalized transforms – AP-analysis (APA) and the difference (residual) relative shifted phase (DRSP-) images to calculate the APIm. The identified objects are recognized as members of classes modeled with 3D templates – images of different types airplanes rotated in space. The dynamic anisotropic properties of APIm causes the increasing of sensitivity to circular angle rotation and make possibl…
Application of neural networks in diagnostics of chemical compounds based on their infrared spectra
Abstract The paper presents possibilities of using the so-called „finger-print“ identification method and artificial neural network (ANN) for diagnosis of chemical compounds. The construction of a tool specifically developed for this purpose and the ANN, as well as the required conditions for its proper functioning were described. The identification of chemical compounds was tested in two different ways for proving correctness of the assumptions. First of all, initial studies were carried out with the objective to verify the proper functioning of the developed procedure for IR spectrum interpretation. The second research stage was to find out how the properties of artificial neural networks…
Identification of Objects Based on Generalized Amplitude-Phase Images Statistical Models
The article presents the dynamical objects identification technology based on statistical models of amplitude-phase images (APIm) – multidimensional data arrays (semantic models) and statistical correlation analysis methods using the generalized discrete Hilbert transforms (DHT) – 2D Hilbert (Foucault) isotropic (HTI), anisotropic (HTA) and total transforms – AP-analysis (APA) to calculate the APIm. The identified objects are modeled with 3D airplanes templates rotated in space around the center of Cartesian coordinate system. The DHT domain system of coordinates displaying the plane projections (2D flat images) remains to be space-invariant. That causes the anisotropic properties of APIm a…
Computer-Aided Diagnosis System with Backpropagation Artificial Neural Network—Improving Human Readers Performance
This article presents the results of a study into possibility of artificial neural networks (ANNs) to classify cancer changes in mammographic images. Today’s Computer-Aided Detection (CAD) systems cannot detect 100 % of pathological changes. One of the properties of an ANN is generalized information —it can identify not only learned data but also data that is similar to training set. The combination of CAD and ANN could give better result and help radiologists to take the right decision.
Application of neural network to predict purchases in online store
A key ability of competitive online stores is effective prediction of customers’ purchase intentions as it makes it possible to apply personalized service strategy to convert visitors into buyers and increase sales conversion rates. Data mining and artificial intelligence techniques have proven to be successful in classification and prediction tasks in complex real-time systems, like e-commerce sites. In this paper we proposed a back-propagation neural network model aiming at predicting purchases in active user sessions in a Web store. The neural network training and evaluation was performed using a set of user sessions reconstructed from server log data. The proposed neural network was abl…
Abnormal Textures Identification Based on Digital Hilbert Optics Methods: Fundamental Transforms and Models
The article presents the abnormal textures identification technology based on structural and statistical models of amplitude-phase images (APIm) – multidimensional data arrays (semantic models) and statistical correlation analysis methods using the generalized discrete Hilbert transforms (DHT) – 2D Hilbert (Foucault) isotropic (HTI), anisotropic (HTA) and total transforms – AP-analysis (APA) to calculate the APIm. The identified fragments of textures are obtained as examples of experimental observation of real mammograms contains areas of pathological tissues. The DHT based information technology as conceptual chart description is discussed and illustrated with DHO domain images. As additio…