0000000000205489

AUTHOR

Quynh T. Tran

Optimizing droop coefficients for minimum cost operation of islanded micro-grids

This paper shows how minimum cost energy management can be carried out for islanded micro-grids considering an expanded state that also includes the system's frequency. Each of the configurations outputted by the energy management system at each hour are indeed technically sound and coherent from the point of view of generation-consumption balancing by exploiting a frequency dependent load flow algorithm. A Glow-worm Swarm Optimization (GSO) algorithm carried out in a 24 hour time frame provides optimized results. A test has been carried out for a residential PV-Storage-Microturbine islanded micro-grid to show the feasibility as well as the efficiency of the proposed approach and results ar…

research product

Urban Energy Hubs Economic Optimization and Environmental Comparison in Italy and Vietnam

This paper aims to perform the minimization of the yearly energy supply cost from the main electricity and natural gas grids related to an energy district, considering the installation of different equipments. The case study refers to energy consumption of a medium density urban district and involves the exploitation of different energy sources and devices (photovoltaic systems, electrical energy storage, heat pumps and cogenerators). The analysis of the district energy supply is accomplished through an energy hub model. After a cost analysis related to the considered energy systems, a MILP algorithm was used for the optimization of a cost function and the simulation of various scenarios. M…

research product

Ancillary Services in the Energy Blockchain for Microgrids

The energy blockchain is a distributed Internet protocol for energy transactions between nodes of a power system. Recent applications of the energy blockchain in microgrids only consider the energy transactions between peers without considering the technical issues that can arise, especially when the system is islanded. One contribution of the paper is, thus, to depict a comprehensive framework of the technical and economic management of microgrids in the blockchain era, considering, for the first time, the provision of ancillary services and, in particular, of the voltage regulation service. When more PV nodes are operating in the grid, large reactive power flows may appear in the branches…

research product

A methodology for assessing the impact of salinity gradient power generation in urban contexts

Abstract The paper proposes a methodology to assess the potential impact of salinity gradient power technology in urban contexts. The idea to employ such energy source in urban contexts derives from the observation that, among the energy districts outputs, low-salinity treated wastewater can be used to produce electricity if a suitable source of high salinity feed (seawater of a salt-works) is also available. The methodology uses the HOMER software for assessing the district’s electric energy production, consumption and exchange with the main grid. Then, starting from the total gross surface and the number of inhabitants of the district, some possible realistic scenarios characterized by di…

research product

A review of health assessment techniques for distribution transformers in smart distribution grids

Due to the large number of distribution transformers in the distribution grid, the status of distribution transformers plays an important role in ensuring the safe and reliable operation of the these grids. To evaluate the distribution transformer health, many assessment techniques have been studied and developed. These tools will support the transformer operators in predicting the status of the distribution transformer and responding effectively. This paper will review the literature in the area, analyze the latest techniques as well as highlight the advantages and disadvantages of current methodologies.

research product

Frequency constrained optimal Power Flow based on Glow-worm Swarm Optimization in Islanded Microgrids

This work presents an application of a swarm optimization method to solve the optimal power flow problem taking into account the constraints of frequency and line ampacity in three-phase islanded Microgrids. Each generation unit is equipped with a Power Electronics Interface. In the considered formulation, the droop control parameters are considered as variables to be adjusted by a higher control level, while the frequency is kept in rated bounds. Another typical constraint for OPF formulation, the max ampacity of each line, is also considered. Two case studies with different dimensions and electrical features have been considered and the obtained results show the efficiency of the proposed…

research product

Nonlinear droop control for minimum power losses operation in islanded microgrids

In this work, a modified primary regulation technique is proposed to control one of the inverter interfaced units feeding an islanded microgrid. The proposed approach employs an off-line minimum losses Optimal Power Flow, OPF, to extract a lookup table for the composition of the droop curve. Simulations prove that generators reach an operating point that corresponds to a minimum loss operation for the relevant power flow distribution. Since OPF has been implemented with frequency and voltage dependent models, the results of the modified droop are stable and also energy efficient. Further studies will address further analysis on systems showing different R/X ratio and modeling of more genera…

research product

Real-Time Minimization Power Losses by Driven Primary Regulation in Islanded Microgrids

Islanded microgrids are small networks that work independently from the main grid. The frequency and voltage in islanded microgrids are affected directly by the output power of distributed generators and power demand variations. In this work, a real-time driven primary regulation, which relies on optimized P-f droop coefficients, is proposed. In all operating conditions, it minimizes the power losses for islanded microgrids. The proposed configuration will allow the optimization modules to interact with each other and adjust parameters producing a suitable power sharing among generators. The methodology is tested based on a hardware-in-the-loop experimental set-up where distributed generato…

research product

Performance Improvement of Grid-Integrated Doubly Fed Induction Generator under Asymmetrical and Symmetrical Faults

The doubly fed induction generator (DFIG)-based wind energy conversion system (WECS) suffers from voltage and frequency fluctuations due to the stochastic nature of wind speed as well as nonlinear loads. Moreover, the high penetration of wind energy into the power grid is a challenge for its smooth operation. Hence, symmetrical faults are most intense, inflicting the stator winding to low voltage, disturbing the low-voltage ride-through (LVRT) functionality of a DFIG. The vector control strategy with proportional–integral (PI) controllers was used to control rotor-side converter (RSC) and grid-side converter (GSC) parameters. During a symmetrical fault, however, a series grid-side converter…

research product

Challenges and Opportunities for Renewable-Based Microgrids Integration in Vietnam

Vietnam is among the South-Asian regions the one that better supplies remote areas. However, many islands and remote areas are still not connected to the main grid and this fact jeopardizes their development, while forcing people to move to urban areas. With a high potential from renewable energy sources and a lot of islands, Vietnam has thus many favorable environmental features for developing the microgrids technology. In this chapter, a detailed analysis about opportunities and challenges for widespread deployment of microgrids technology in Vietnam is considered. Such analysis is based on the assessments of the potential from renewable energy sources in the country and of the national p…

research product

Improved primary regulation for minimum energy losses in islanded microgrids

In this paper, an improved primary regulation is proposed for grid forming units supplying islanded microgrids. A minimum losses Optimal Power Flow is run off-line to devise the operating set points composing the primary regulation curve. In this way, after load perturbations, generators can reach an optimized operating point for a given and unique minimum losses energy flows distribution. The idea is to skip the hierarchical control architecture and provide a feasible and optimized operating point. A case study over 24 hours shows the effectiveness of this new approach as well as the improved operation quality of the system.

research product

Condition Assessment and Analysis of Bearing of Doubly Fed Wind Turbines Using Machine Learning Technique

Condition monitoring of wind turbines is progressively increasing to maintain the continuity of clean energy supply to power grids. This issue is of great importance since it prevents wind turbines from failing and overheating, as most wind turbines with doubly fed induction generators (DFIG) are overheated due to faults in generator bearings. Bearing fault detection has become a main topic targeting the optimum operation, unscheduled downtime, and maintenance cost of turbine generators. Wind turbines are equipped with condition monitoring devices. However, effective and reliable fault detection still faces significant difficulties. As the majority of health monitoring techniques are primar…

research product

A multi-agent system reinforcement learning based optimal power flow for islanded microgrids

In this paper, a distributed intelligence algorithm is used to manage the optimal power flow problem in islanded microgrids. The methodology provides a suboptimal solution although the error is limited to a few percent as compared to a centralized approach. The solution algorithm is multi-agent based. According to the method, couples of agents communicate with each other only if the buses where they are located are electrically connected. The overall prizing system required for learning uses a feedback from an approximated model of the network. Based on the latter, a distributed reiforcement learning algorithm is implemented to minimize the joule losses while meeting operational constraints…

research product

Minimum power losses by using droop coefficients regulation method with voltage and frequency constraints in islanded microgrids

In this paper, a droop coefficients regulation methodology is proposed for an islanded microgrid to optimize the power losses. Based on the P-f and Q-V relations to adjust the droop coefficients at every loading condition, the optimized operating set point generates minimum power losses operation while satisfying the constraints of voltage and frequency limitation. A 9-bus case study is here implemented to show the effectiveness of this new approach as well as the improved operation quality of the system.

research product

Optimal Placements of SVC Devices in Low Voltage Grids with High Penetration of PV Systems

With the increase of load demand and distributed photovoltaic (PV) systems on the electric grid, maintaining the required voltage tolerance at the point delivery (customer homes/businesses) is becoming more challenging for electric power utilities. In a residential neighborhood, the peak load typically occurs in the early evening hours while maximum PV generation occurs during mid day. As a result, the lowest voltage operating points occur in the evening hours; whereas the highest voltage operating point occur during the day, when the PV systems are injecting more power than what is locally consumed. Static VAR Compensators (SVCs) can be used to mitigate voltage violations and smooth out th…

research product

Driven Primary Regulation for Minimum Power Losses Operation in Islanded Microgrids

The paper proposes an improved primary regulation method for inverter-interfaced generating units in islanded microgrids. The considered approach employs an off-line minimum losses optimal power flow (OPF) to devise the primary frequency regulation curve’s set-points while satisfying the power balance, frequency and current constraints. In this way, generators will reach an optimized operating point corresponding to a given and unique power flow distribution presenting the minimum power losses. The proposed approach can be particularly interesting for diesel-based islanded microgrids that face, constantly, the issue of reducing their dependency from fossil fuels and of enhancing their gener…

research product

Voltage Profile Improvement for Soc Son's Low-Voltage Grid with High Penetration of PV Systems by Optimizing the Location of SVC Devices

This paper presents a method that is applied to optimize the placement of Static VAR compensators in a real low-voltage grid in the Vietnamese territory. In this way, the voltage profile of the distribution grid turns to be improved. A heuristic method, the Binary Particle Swarm Optimization, is used to find a solution to this problem within the Matlab environment. A case study that considers a high penetration of rooftop PV systems in a branch of Soc Son distribution grid is implemented to show the efficiency of the optimization method for this specific application.

research product