0000000000208095
AUTHOR
Elisa M. Ruohonen
Magnetoencephalography Responses to Unpredictable and Predictable Rare Somatosensory Stimuli in Healthy Adult Humans
Mismatch brain responses to unpredicted rare stimuli are suggested to be a neural indicator of prediction error, but this has rarely been studied in the somatosensory modality. Here, we investigated how the brain responds to unpredictable and predictable rare events. Magnetoencephalography responses were measured in adults frequently presented with somatosensory stimuli (FRE) that were occasionally replaced by two consecutively presented rare stimuli [unpredictable rare stimulus (UR) and predictable rare stimulus (PR); p = 0.1 for each]. The FRE and PR were electrical stimulations administered to either the little finger or the forefinger in a counterbalanced manner between the two conditio…
Brain responses to sound intensity changes dissociate depressed participants and healthy controls.
Depression is associated with bias in emotional information processing, but less is known about the processing of neutral sensory stimuli. Of particular interest is processing of sound intensity which is suggested to indicate central serotonergic function. We tested weather event-related brain potentials (ERPs) to occasional changes in sound intensity can dissociate first-episode depressed, recurrent depressed and healthy control participants. The first-episode depressed showed larger N1 amplitude to deviant sounds compared to recurrent depression group and control participants. In addition, both depression groups, but not the control group, showed larger N1 amplitude to deviant than standa…
Event-related potentials to task-irrelevant sad faces as a state marker of depression
Negative bias in face processing has been demonstrated in depression, but there are no longitudinal investigations of negative bias in symptom reduction. We recorded event-related potentials (P1 and N170) to task-irrelevant facial expressions in depressed participants who were later provided with a psychological intervention and in never depressed control participants. Follow-up measurements were conducted for the depressed group two and 39 months later. Negative bias was found specifically in the depression group, and was demonstrated as enlarged P1 amplitude to sad faces, which normalized in the follow-up measurements when the participants had fewer symptoms. Because the P1 amplitude reco…
Event-Related Potentials to Changes in Sound Intensity Demonstrate Alterations in Brain Function Related to Depression and Aging
Measures of the brain’s automatic electrophysiological responses to sounds represent a potential tool for identifying age- and depression-related neural markers. However, these markers have rarely been studied related to aging and depression within one study. Here, we investigated auditory event-related potentials (ERPs) in the brain that may show different alterations related to aging and depression. We used an oddball condition employing changes in sound intensity to investigate: (i) sound intensity dependence; (ii) sensory gating; and (iii) change detection, all within a single paradigm. The ERPs of younger (18–40 years) and older (62–80 years) depressed female participants and age-match…
Alterations in working memory maintenance of fearful face distractors in depressed participants : An ERP study
Task-irrelevant threatening faces (e.g., fearful) are difficult to filter from visual working memory (VWM), but the difficulty in filtering non-threatening negative faces (e.g., sad) is not known. Depressive symptoms could also potentially affect the ability to filter different emotional faces. We tested the filtering of task-irrelevant sad and fearful faces by depressed and control participants performing a color-change detection task. The VWM storage of distractors was indicated by contralateral delay activity, a specific event-related potential index for the number of objects stored in VWM during the maintenance phase. The control group did not store sad face distractors, but they automa…
Automatic Processing of Changes in Facial Emotions in Dysphoria: A Magnetoencephalography Study
It is not known to what extent the automatic encoding and change detection of peripherally presented facial emotion is altered in dysphoria. The negative bias in automatic face processing in particular has rarely been studied. We used magnetoencephalography (MEG) to record automatic brain responses to happy and sad faces in dysphoric (Beck’s Depression Inventory ≥ 13) and control participants. Stimuli were presented in a passive oddball condition, which allowed potential negative bias in dysphoria at different stages of face processing (M100, M170, and M300) and alterations of change detection (visual mismatch negativity, vMMN) to be investigated. The magnetic counterpart of the vMMN was el…