0000000000208725

AUTHOR

Sara Callejón

showing 3 related works from this author

Ability of Kocuria varians LTH 1540 To Degrade Putrescine: Identification and Characterization of a Novel Amine Oxidase.

2015

This work describes the identification and characterization of an amine oxidase from Kocuria varians LTH 1540 (syn. Micrococcus varians) primarily acting on putrescine. Data from MALDI-TOF MS/MS and the identification of Δ(1)-pyrroline as degradation product from putrescine indicate that the enzyme is a flavin-dependent putrescine oxidase (PuO). Properties of partially purified enzyme have been determined. The enzyme oxidizes diamines, putrescine and cadaverine, and, to a lesser extent, polyamines, such as spermidine, but not monoamines. The kinetic constants (Km and Vmax) for the two major substrates were 94 ± 10 μM and 2.3 ± 0.1 μmol/min·mg for putrescine and 75 ± 5 μM and 0.15 ± 0.02 μmo…

chemistry.chemical_classificationAmine oxidaseCadaverineOxidoreductases Acting on CH-NH Group DonorsChromatographyKocuria variansGeneral ChemistryBiologyHydrogen-Ion ConcentrationAmine oxidase inhibitorsMicrococcusSpermidinePutrescine oxidasechemistry.chemical_compoundKineticsEnzymeBiodegradation EnvironmentalchemistryBacterial ProteinsEnzyme StabilityPutrescinePutrescineGeneral Agricultural and Biological SciencesJournal of agricultural and food chemistry
researchProduct

Recombinant laccase from Pediococcus acidilactici CECT 5930 with ability to degrade tyramine

2017

Biogenic amines degradation by bacterial laccases is little known, so we have cloned and heterologously expressed, in E. coli, a new laccase from Pediococcus acidilactici CECT 5930 (Lpa5930), a lactic acid bacterium commonly found in foods able to degrade tyramine. The recombinant enzyme has been characterized by physical and biochemical assays. Here we report the optimization of expression and purification procedures of this laccase. DNA encoding sequence of laccase from P. acidilactici was amplified by PCR and cloned into the expression plasmid pET28a for induction by isopropyl-β-D-thiogalactoipyranoside. Protein expression was performed in E. coli BL21(DE3) harboring pGro7 plasmid expres…

0106 biological sciences0301 basic medicineArabinoseMolecular biologylcsh:MedicineLaccasesBiochemistryBiotecnologia01 natural sciencesSubstrate Specificitylaw.inventionDatabase and Informatics Methodschemistry.chemical_compoundlawRecombinant Protein PurificationCloning MolecularAmineslcsh:Sciencechemistry.chemical_classificationMultidisciplinaryABTSbiologyOrganic CompoundsTemperatureHydrogen-Ion ConcentrationTyramineRecombinant ProteinsEnzymesChemistryRecombination-Based AssayBiochemistryPhysical SciencesRecombinant DNAElectrophoresis Polyacrylamide GelOxidation-ReductionSequence AnalysisResearch ArticleProtein PurificationBioinformaticsTyramineLibrary ScreeningDNA constructionResearch and Analysis Methods03 medical and health sciencesBacterial ProteinsSequence Motif Analysis010608 biotechnologyAmino Acid SequenceBenzothiazolesPediococcus acidilacticiLaccaseMolecular Biology Assays and Analysis TechniquesBase SequenceMolecular massLaccaseOrganic Chemistrylcsh:RChemical CompoundsBiology and Life SciencesProteinsPediococcus acidilacticiSequence Analysis DNAbiology.organism_classificationMolecular biology techniques030104 developmental biologyEnzymechemistryPlasmid ConstructionEnzymologySpectrophotometry Ultravioletlcsh:QSulfonic AcidsEnzimsProteïnesPurification TechniquesPLOS ONE
researchProduct

Structural analysis and biochemical properties of laccase enzymes from two Pediococcus species

2021

Summary Prokaryotic laccases are emergent biocatalysts. However, they have not been broadly found and characterized in bacterial organisms, especially in lactic acid bacteria. Recently, a prokaryotic laccase from the lactic acid bacterium Pediococcus acidilactici 5930, which can degrade biogenic amines, was discovered. Thus, our study aimed to shed light on laccases from lactic acid bacteria focusing on two Pediococcus laccases, P. acidilactici 5930 and Pediococcus pentosaceus 4816, which have provided valuable information on their biochemical activities on redox mediators and biogenic amines. Both laccases are able to oxidize canonical substrates as ABTS, ferrocyanide and 2,6‐DMP, and non‐…

BioengineeringApplied Microbiology and BiotechnologyBiochemistry03 medical and health scienceschemistry.chemical_compoundPediococcusResearch Articles030304 developmental biologyLaccasechemistry.chemical_classification0303 health sciencesABTSBacteriabiology030306 microbiologyChemistryLaccaseSubstrate (chemistry)Pediococcus acidilacticifood and beveragesbiology.organism_classificationLactic acidEnzymeProkaryotic CellsBiochemistryPediococcusOxidation-ReductionBacteriaTP248.13-248.65Research ArticleBiotechnologyMicrobial Biotechnology
researchProduct