6533b7d3fe1ef96bd1260b42

RESEARCH PRODUCT

Ability of Kocuria varians LTH 1540 To Degrade Putrescine: Identification and Characterization of a Novel Amine Oxidase.

Sergi FerrerSara CallejónIsabel PardoRamon Sendra

subject

chemistry.chemical_classificationAmine oxidaseCadaverineOxidoreductases Acting on CH-NH Group DonorsChromatographyKocuria variansGeneral ChemistryBiologyHydrogen-Ion ConcentrationAmine oxidase inhibitorsMicrococcusSpermidinePutrescine oxidasechemistry.chemical_compoundKineticsEnzymeBiodegradation EnvironmentalchemistryBacterial ProteinsEnzyme StabilityPutrescinePutrescineGeneral Agricultural and Biological Sciences

description

This work describes the identification and characterization of an amine oxidase from Kocuria varians LTH 1540 (syn. Micrococcus varians) primarily acting on putrescine. Data from MALDI-TOF MS/MS and the identification of Δ(1)-pyrroline as degradation product from putrescine indicate that the enzyme is a flavin-dependent putrescine oxidase (PuO). Properties of partially purified enzyme have been determined. The enzyme oxidizes diamines, putrescine and cadaverine, and, to a lesser extent, polyamines, such as spermidine, but not monoamines. The kinetic constants (Km and Vmax) for the two major substrates were 94 ± 10 μM and 2.3 ± 0.1 μmol/min·mg for putrescine and 75 ± 5 μM and 0.15 ± 0.02 μmol/min·mg for cadaverine. Optimal temperature and pH were 45 °C and 8.5, respectively. Enzyme was stable until 50 °C. K. varians PuO is sensitive to human flavin-dependent amine oxidase inhibitors and carboxyl-modifying compounds. The new enzyme has been isolated from a bacterial starter used in the manufacture of fermented meat. One of the problems of fermented foods or beverages is the presence of toxic biogenic amines produced by bacteria. The importance of this works lies in the description of a new enzyme able to degrade two of the most abundant biogenic amines (putrescine and cadaverine), the use of which could be envisaged to diminish biogenic amines content in foods in the future.

10.1021/jf5026967https://pubmed.ncbi.nlm.nih.gov/25817823