0000000000209084

AUTHOR

A. Chatterjee

showing 14 related works from this author

Oral and Poster Papers Submitted for Presentation at the 5th Congress of the EUGMS “Geriatric Medicine in a Time of Generational Shift September 3–6,…

2008

GerontologyGeriatrics0303 health sciencesmedicine.medical_specialtyNutrition and Dietetics030309 nutrition & dieteticsGeriatrics gerontologybusiness.industrymedia_common.quotation_subjectAlternative medicineMedicine (miscellaneous)03 medical and health sciencesPresentation0302 clinical medicinemedicine030212 general & internal medicineGeriatrics and GerontologybusinessQuality of Life Researchmedia_commonThe Journal of Nutrition Health and Aging
researchProduct

Volume IV The DUNE far detector single-phase technology

2020

This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. The DUNE collaboration also acknowledges the international, national, and regional funding agencies supporting the institutions who have contributed to completing this Technical Design Report.

Technology530 Physicsmedia_common.quotation_subjectNeutrino oscillations liquid Argon TPC DUNE technical design report single phase LArTPCElectronsFREE-ELECTRONS01 natural sciences7. Clean energy09 Engineering030218 nuclear medicine & medical imagingStandard Model03 medical and health sciencesneutrino0302 clinical medicineLIQUID ARGON0103 physical sciencesGrand Unified TheoryHigh Energy PhysicsAerospace engineeringInstrumentationInstruments & InstrumentationMathematical Physicsmedia_commonPhysicsScience & Technology02 Physical Sciences010308 nuclear & particles physicsbusiness.industryDetectorLıquıd ArgonfreeNuclear & Particles PhysicsSymmetry (physics)UniverseLong baseline neutrino experiment CP violationAntimatterNeutrinobusinessEvent (particle physics)
researchProduct

The ATLAS Data Acquisition and High Level Trigger system

2016

Journal of Instrumentation 11(06), P06008 (2016). doi:10.1088/1748-0221/11/06/P06008

High level triggerComputer sciencedata acquisitionPhysics::Instrumentation and DetectorsLarge hadron collideronline filteringTrigger Concepts and Systems (Hardware and Software)Control and Monitor Systems Online01 natural sciencesOnline farms and online filteringData acquisitionRecopilación de datos[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Detectors and Experimental TechniquesInstrumentationMathematical PhysicsSettore FIS/01Online Farms and Online FilteringLarge Hadron ColliderControl and monitor systems onlineATLAS experimentATLASmedicine.anatomical_structureTrigger concepts and systems (hardware and software)Triggers and rulesComputer hardwareperformanceOnline farms andControl and monitor systems online; Data acquisition concepts; Online farms and online filtering; Trigger concepts and systems (hardware and software)Ciências Naturais::Ciências Físicas:Ciências Físicas [Ciências Naturais]Data Acquisition ConceptsATLAS detector; ATLAS experiment; CERN; Large Hadron ColliderATLAS experiment610Accelerator Physics and Instrumentation530LHC ATLAS High Energy Physics TriggerAtlas (anatomy)0103 physical sciencesmedicineddc:610ElectronicsInstrumentation (computer programming)Control and monitor systems online; Data acquisition concepts; Online farms and; online filtering; Trigger concepts and systems (hardware and software)010306 general physicsCiencias ExactasScience & Technology010308 nuclear & particles physicsbusiness.industryData acquisition conceptsFísicaAcceleratorfysik och instrumenteringtriggerSistema en líneaData flow diagrammonitoringHigh Energy Physics::Experimentbusiness
researchProduct

First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform

2020

The ProtoDUNE-SP detector was constructed and operated on the CERN Neutrino Platform. We thank the CERN management for providing the infrastructure for this experiment and gratefully acknowledge the support of the CERN EP, BE, TE, EN, IT and IPT Departments for NP04/ProtoDUNE-SP. This documentwas prepared by theDUNEcollaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by CNPq, FAPERJ, FAPEG and FAPESP, Brazil; CFI, IPP and NSERC, Canada; CERN; MSMT, Czech Republi…

TechnologyHIGH-ENERGYPhysics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsfar detectorbeam transportNoble liquid detectors (scintillation ionization double-phase)Cms Experıment01 natural sciences7. Clean energy09 EngineeringParticle identificationHigh Energy Physics - Experiment030218 nuclear medicine & medical imagingHigh Energy Physics - Experiment (hep-ex)0302 clinical medicineNoble liquid detectors (scintillationDetectors and Experimental TechniquesInstrumentationInstruments & Instrumentationphysics.ins-dettime resolutionMathematical PhysicsPhysics02 Physical SciencesTime projection chamberLarge Hadron ColliderDetectorInstrumentation and Detectors (physics.ins-det)double-phase)Nuclear & Particles PhysicsLIGHTNeutrinoParticle Physics - ExperimentperformanceNoble liquid detectors(scintillation ionization double-phase)noiseCERN LabLarge detector systems for particle and astroparticle physics Noble liquid detectors (scintillation ionization double-phase) Time projection Chambers (TPC)530 Physicsenergy lossTime projection chambersFOS: Physical sciencesParticle detectorNuclear physics03 medical and health sciencesneutrino: deep underground detector0103 physical sciencesionizationDeep Underground Neutrino ExperimentHigh Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]signal processingactivity reportScience & Technology010308 nuclear & particles physicshep-exLarge detector systems for particle and astroparticle physicsTime projection Chambers (TPC)530 Physiksensitivitycalibrationtime projection chamber: liquid argonExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicsingle-phase)Large detector systems for particle and astroparticle physics; Noble liquid detectors (scintillation ionization double-phase); Time projection Chambers (TPC)High Energy Physics::Experimentphoton: detectorparticle identificationcharged particle: irradiationBeam (structure)
researchProduct

Neutrino interaction classification with a convolutional neural network in the DUNE far detector

2020

The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino…

Neutrino Oscillations. Neutrino detectors.Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsfar detector01 natural sciencesPhysics Particles & FieldsHigh Energy Physics - Experimentcharged currentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Particle Physics ExperimentsMuon neutrinoneutrino/e: particle identificationNeutrino detectorsDetectors and Experimental Techniquesphysics.ins-detCharged currentneutrino: interactionInformáticaPhysicsTelecomunicacionesNeutrino oscillationsPhysicsNeutrino interactions neural network DUNE Deep Underground Neutrino ExperimentInstrumentation and Detectors (physics.ins-det)Experiment (hep-ex)Neutrino detectorPhysical SciencesCP violationNeutrinoParticle Physics - ExperimentParticle physicsdata analysis method530 Physicsneural networkAstrophysics::High Energy Astrophysical PhenomenaCONSERVATIONFOS: Physical sciencesAstronomy & AstrophysicsDeep Learningneutrino: deep underground detectorneutrino physics0103 physical sciencesNeutrino Oscillations. Neutrino detectorsObject DetectionNeutrinoCP: violationDeep Underground Neutrino ExperimentHigh Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Neutrinos010306 general physicsNeutrino oscillationneutrino/mu: particle identificationIOUScience & TechnologyDUNENeutrino interactions010308 nuclear & particles physicshep-exHigh Energy Physics::PhenomenologyFísicaNeutrino InteractionDetector530 PhysiksensitivityefficiencyHigh Energy Physics::ExperimentElectron neutrino
researchProduct

High-ET isolated-photon plus jets production in pp collisions at s=8 TeV with the ATLAS detector

2017

The dynamics of isolated-photon plus one-, two- and three-jet production in pp collisions at a centre-of-mass energy of 8 TeV are studied with the ATLAS detector at the LHC using a data set with an ...

Quantum chromodynamicsPhysicsNuclear and High Energy PhysicsParticle physicsPhotonLarge Hadron ColliderPhysics::Instrumentation and Detectors010308 nuclear & particles physicsAtlas detectorAstrophysics::High Energy Astrophysical Phenomena01 natural sciences7. Clean energyNuclear physics0103 physical sciencesTransverse momentumHigh Energy Physics::Experiment010306 general physicsNuclear Physics B
researchProduct

Association Between Tumor Egfr and Kras Mutation Status and Clinical Outcomes in Nsclc Patients Randomized to Sorafenib Plus Best Supportive Care (BS…

2012

ABSTRACT Background Tumor EGFR and KRas mutations are both predictive and prognostic biomarkers in patients with advanced NSCLC. We analyzed the correlation between these biomarkers and treatment outcomes in a phase III trial of 3rd/4th line sorafenib in patients with NSCLC. Methods The global, randomized, placebo-controlled MISSION trial enrolled 703 patients with advanced relapsed/refractory NSCLC of predominantly non-squamous histology. The primary study endpoint was overall survival (OS). EGFR and KRas mutations were analyzed in archival tumor samples and in circulating tumor DNA isolated from plasma. Results Tumor and/or plasma mutation data were available from 347 patients (49%). EGFR…

OncologySorafenibmedicine.medical_specialtyProportional hazards modelbusiness.industryHematologymedicine.disease_causePlacebomedicine.diseaseBreast cancerOncologyEgfr mutationInternal medicineMedicineBiomarker (medicine)KRASStage (cooking)businessmedicine.drugAnnals of Oncology
researchProduct

New opportunities at the next-generation neutrino experiments I: BSM neutrino physics and dark matter

2020

Abstract The combination of the high intensity proton beam facilities and massive detectors for precision measurements of neutrino oscillation parameters including the charge-parity violating (CPV) phase will open the door to help make beyond the standard model (BSM) physics reachable even in low energy regimes in the accelerator-based experiments. Large-mass detectors with highly precise tracking and energy measurements, excellent timing resolution, and low energy thresholds will enable the searches for BSM phenomena from cosmogenic origin, as well. Therefore, it is also conceivable that BSM topics in the next-generation neutrino experiments could be the dominant physics topics in the fore…

PhysicsParticle physicsSterile neutrinoPhysics beyond the Standard ModelDark matterGeneral Physics and AstronomyScale (descriptive set theory)Tracking (particle physics)01 natural sciences0103 physical sciencesDeep Underground Neutrino ExperimentHigh Energy Physics::ExperimentNeutrino010306 general physicsNeutrino oscillationReports on Progress in Physics
researchProduct

Volume I. Introduction to DUNE

2020

Journal of Instrumentation 15(08), T08008 (1-228) (2020). doi:10.1088/1748-0221/15/08/T08008

detector: technologydeep underground detector [neutrino]530 PhysicsPhysics::Instrumentation and DetectorsData managementmedia_common.quotation_subjectfar detector610Long baseline neutrino experiment CP violation01 natural sciences030218 nuclear medicine & medical imagingNeutrino oscillations. Neutrino Detectors. CP violation. Matter stabilitydesign [detector]03 medical and health sciencesneutrinoneutrino: deep underground detector0302 clinical medicinenear detector0103 physical sciencesDeep Underground Neutrino Experimentddc:610Neutrino oscillationInstrumentationdetector: designMathematical Physicsactivity reportmedia_common010308 nuclear & particles physicsbusiness.industryNeutrino oscillations. Neutrino Detectors. CP violation. Matter stability.DetectorVolume (computing)Modular designtime projection chamber: liquid argonUniversetechnology [detector]liquid argon [time projection chamber]Systems engineeringHigh Energy Physics::ExperimentNeutrino oscillations DUNE technical design report executive summary detector technologiesdata managementNeutrinobusiness
researchProduct

Measurement of thett¯production cross section inpp¯collisions ats=1.96  TeVusing soft electronb-tagging

2010

The authors present a measurement of the t{bar t} production cross section using events with one charged lepton and jets from p{bar p} collisions at a center-of-mass energy of 1.96 TeV. A b-tagging algorithm based on the probability of displaced tracks coming from the event interaction vertex is applied to identify b quarks from top decay. Using 318 pb{sup -1} of data collected with the CDF II detector, they measure the t{bar t} production cross section in events with at least one restrictive (tight) b-tagged jet and obtain 8.9{sub -1.0}{sup +1.0}(stat.){sub -1.0}{sup +1.1}(syst.) pb. The cross section value assumes a top quark mass of m{sub t} is presented in the paper. This result is cons…

Top quarkCollider physicsHadronTevatronGeneral Physics and AstronomyElementary particleKinematicsElectronJet (particle physics)01 natural sciences7. Clean energyParticle identificationlaw.inventionlawInvariant massFermilabNuclear ExperimentQuantum chromodynamicsPhysicsLarge Hadron ColliderLuminosity (scattering theory)Supersymmetryb-taggingHadronizationTransverse planeProduction (computer science)Collider Detector at FermilabQuarkSemileptonic decayNuclear and High Energy PhysicsParticle physicsBar (music)Astrophysics::High Energy Astrophysical PhenomenaBottom quarkMeasure (mathematics)Standard ModelNuclear physicsCross section (physics)Particle decay0103 physical sciencesCollider010306 general physicsCompact Muon SolenoidMuonBranching fraction010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyMultiplicity (mathematics)FermionVertex (geometry)Pair productionHigh Energy Physics::ExperimentEnergy (signal processing)Bar (unit)LeptonPhysical Review D
researchProduct

White Paper on New Opportunities at the Next-Generation Neutrino Experiments (Part 1: BSM Neutrino Physics and Dark Matter)

2019

The combination of the high intensity proton beam facilities and massive detectors for precision measurements of neutrino oscillation parameters including the charge-parity violating (CPV) phase will open the door to help make beyond the standard model (BSM) physics reachable even in low energy regimes in the accelerator-based experiments. Large-mass detectors with highly precise tracking and energy measurements, excellent timing resolution, and low energy thresholds will enable the searches for BSM phenomena from cosmogenic origin, as well. Therefore, it is also conceivable that BSM topics in the next-generation neutrino experiments could be the dominant physics topics in the foreseeable f…

High Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)hep-exPhysics::Instrumentation and DetectorsFOS: Physical scienceshep-phHigh Energy Physics::ExperimentParticle Physics - ExperimentParticle Physics - PhenomenologyHigh Energy Physics - Experiment
researchProduct

Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC

2016

The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nuclear-track detectors with surface area $\sim$18 m$^2$, sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trap…

ExoticsParticle physicsNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsProtonMagnetic monopoleFOS: Physical sciencesddc:500.2Particle and resonance production114 Physical sciences7. Clean energy01 natural sciencesMathematical SciencesHigh Energy Physics - Experimentlaw.inventionCOLLIDERHigh Energy Physics - Experiment (hep-ex)MAGNETIC MONOPOLESSTOPPING-POWERlawHadron-Hadron scattering (experiments)0103 physical sciencesFIELD010306 general physicsColliderHIGHLY IONIZING PARTICLESphysics.ins-detPhysicsOPALLarge Hadron ColliderSTABLE MASSIVE PARTICLEShep-ex010308 nuclear & particles physicsInstrumentation and Detectors (physics.ins-det)Nuclear & Particles PhysicsPair productionMoEDAL experimentPhysical SciencesProduction (computer science)CHARGEParticle Physics - ExperimentEnergy (signal processing)Exotic
researchProduct

Volume III. DUNE far detector technical coordination

2020

The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay-these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the st…

Technology530 PhysicsPhysics::Instrumentation and Detectorsmedia_common.quotation_subjectContext (language use)01 natural sciences09 Engineering030218 nuclear medicine & medical imagingneutrino03 medical and health sciences0302 clinical medicine0103 physical sciencesGrand Unified TheoryDeep Underground Neutrino ExperimentHigh Energy PhysicsInstruments & InstrumentationNeutrino oscillations liquid Argon TPC technical design report technical coordinationInstrumentationMathematical Physicsmedia_commonScience & Technology02 Physical Sciences010308 nuclear & particles physicsDetectorVolume (computing)530 PhysikNuclear & Particles PhysicsUniverseSystems engineeringHigh Energy Physics::ExperimentState (computer science)NeutrinoLong baseline neutrino experiment CP violationJournal of Instrumentation
researchProduct

Transverse momentum, rapidity, and centrality dependence of inclusive charged-particle production in sNN=5.02 TeV p+ Pb collisions measured by the AT…

2016

Measurements of the per-event charged-particle yield as a function of the charged-particle transverse momentum and rapidity are performed using p+Pbp+Pb collision data collected by the ATLAS experiment at the LHC at a centre-of-mass energy of sqrt (SNN) = 5.01 TeV. Charged particles are reconstructed over pseudorapidity |η|<2.3|η|<2.3 and transverse momentum between 0.1 GeV0.1 GeV and 22 GeV22 GeV in a dataset corresponding to an integrated luminosity of 1 μb−11 μb−1. The results are presented in the form of charged-particle nuclear modification factors, where the p+Pbp+Pb charged-particle multiplicities are compared between central and peripheral p+Pbp+Pb collisions as well as to charged-p…

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron ColliderLuminosity (scattering theory)Proton010308 nuclear & particles physics01 natural sciencesCharged particleNuclear physicsPseudorapidity0103 physical sciencesRapidityNuclear Experiment010306 general physicsNucleonGlauberPhysics Letters B
researchProduct