0000000000210320

AUTHOR

Stéphanie Grandemange

0000-0002-4101-6303

showing 8 related works from this author

Role of RNA Guanine Quadruplexes in Favoring the Dimerization of SARS Unique Domain in Coronaviruses

2020

ABSTRACTCoronaviruses may produce severe acute respiratory syndrome (SARS). As a matter of fact, a new SARS-type virus, SARS-CoV-2, is responsible of a global pandemic in 2020 with unprecedented sanitary and economic consequences for most countries. In the present contribution we study, by all-atom equilibrium and enhanced sampling molecular dynamics simulations, the interaction between the SARS Unique Domain and RNA guanine quadruplexes, a process involved in eluding the defensive response of the host thus favoring viral infection of human cells. Our results evidence two stable binding modes involving an interaction site spanning either the protein dimer interface or only one monomer. The …

Models Molecular0301 basic medicineLetterSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2)DimerPneumonia ViralCoronaviruProtein dimerMolecular Dynamics SimulationViral infection01 natural sciencesVirusBetacoronavirus03 medical and health scienceschemistry.chemical_compound0302 clinical medicine0103 physical sciencesG-QuadruplexeHumans[CHIM]Chemical SciencesGeneral Materials Science030212 general & internal medicinePhysical and Theoretical ChemistryPandemicsEconomic consequences030304 developmental biology0303 health sciences010304 chemical physicsBetacoronaviruSARS-CoV-2ChemistryCoronavirus InfectionRational designCOVID-19RNASpike Glycoprotein3. Good healthG-Quadruplexes030104 developmental biologySettore CHIM/03 - Chimica Generale E InorganicaSpike Glycoprotein CoronavirusBiophysicsRNA ViralCoronavirus InfectionsGuanine-QuadruplexesDimerizationProtein Binding
researchProduct

Forever Young: Structural Stability of Telomeric Guanine-Quadruplexes in Presence of Oxidative DNA Lesions

2020

AbstractHuman telomeric DNA (h-Telo), in G-quadruplex (G4) conformation, is characterized by a remarkable structural stability that confers it the capacity to resist to oxidative stress producing one or even clustered 8-oxoguanine lesions. We present a combined experimental/computational investigation, by using circular dichroism in aqueous solutions, cellular immunofluorescence assays and molecular dynamics (MD) simulations, that identifies the crucial role of the stability of G4s to oxidative lesions, related also to their biological role as inhibitors of telomerase, an enzyme overexpressed in most cancers associated to oxidative stress.

chemistry.chemical_classificationTelomeraseCircular dichroismmedicine.diagnostic_testOxidative phosphorylationImmunofluorescencemedicine.disease_causeMolecular dynamicschemistry.chemical_compoundEnzymechemistrymedicineBiophysicsDNAOxidative stress
researchProduct

Forever Young: Structural Stability of Telomeric Guanine Quadruplexes in the Presence of Oxidative DNA Lesions**

2021

International audience; Human telomeric DNA, in G-quadruplex (G4) conformation, is characterized by a remarkable structural stability that confers it the capacity to resist to oxidative stress producing one or even clustered 8-oxoguanine (8oxoG) lesions. We present a combined experimental/computational investigation, by using circular dichroism in aqueous solutions, cellular immunofluorescence assays and molecular dynamics simulations, that identifies the crucial role of the stability of G4s to oxidative lesions, related also to their biological role as inhibitors of telomerase, an enzyme overexpressed in most cancers associated to oxidative stress.

Circular dichroismTelomeraseOxidative phosphorylation010402 general chemistryImmunofluorescencemedicine.disease_cause01 natural scienceselectronic circular dichroismCatalysis[SPI.AUTO]Engineering Sciences [physics]/Automaticchemistry.chemical_compoundmedicineHumansimmunofluorescenceTelomerasechemistry.chemical_classificationmedicine.diagnostic_test010405 organic chemistryCircular DichroismOrganic ChemistryDNAGeneral ChemistryTelomeremolecular dynamics0104 chemical sciences3. Good healthG-QuadruplexesOxidative StressEnzymeBiochemistrychemistrySettore CHIM/03 - Chimica Generale E InorganicaGuanine quadruplexesNucleic Acid Conformationoxidative DNA lesionsGuanine-QuadruplexesDNAOxidative stress
researchProduct

Understanding the Interactions of Guanine Quadruplexes with Peptides as Novel Strategies for Diagnosis or Tuning Biological Functions

2023

Guanine quadruplexes (G4s) are nucleic acid structures exhibiting a complex structural behavior and exerting crucial biological functions, in both cells and viruses. The specific interactions of peptides with G4s, as well as the understanding of the factors driving the specific recognition, are important for the rational design of both therapeutic and diagnostic agents. In the present minireview, we examine the most important studies dealing with the interactions between G4s and peptides, highlighting the strengths and limitations of the present analytic approaches. We also show how the combined use of high-level molecular simulation techniques and experimental spectroscopy represents the b…

spectroscopymolecular modelingSettore CHIM/03 - Chimica Generale E InorganicaOrganic ChemistrypeptidesRNAMolecular MedicineDNAguanine quadruplexesMolecular BiologyBiochemistryChemBioChem
researchProduct

Never cared for what they do. High structural stability of Guanine-quadruplexes in presence of strand-break damages

2021

AbstractDNA integrity is an important factor to assure genome stability and, more generally, cells and organisms’ viability. In presence of DNA damage, the normal cell cycle is perturbed while cells activate their repair processes. Although efficient, the repair system is not always able to ensure the complete restoration of gene integrity. In these cases, not only mutations may occur, but the accumulation of lesions can either lead to carcinogenesis or reach a threshold which induces apoptosis and the programmed cell death. Among the different types of DNA lesions, strand breaks produced by ionizing radiations are the most toxic, due to their inherently difficult repair, which may lead to …

Genome instabilitySenescenceProgrammed cell deathchemistry.chemical_compoundchemistryDNA damageGene expressionmedicineCarcinogenesismedicine.disease_causeGeneDNACell biology
researchProduct

G-quadruplex recognition by DARPIns through epitope/paratope analogy

2022

AbstractWe investigated the mechanisms leading to the specific recognition of Guanine Guadruplex (G4) by DARPins peptides, which can lead to the design of G4s specific sensors. To this end we carried out all-atom molecular dynamic simulations to unravel the interactions between specific nucleic acids, including human-telomeric (h-telo), Bcl-2, and c-Myc, with different peptides, forming a DARPin/G4 complex. By comparing the sequences of DARPin with that of a peptide known for its high affinity for c-Myc, we show that the recognition cannot be ascribed to sequence similarity but, instead, depends on the complementarity between the three-dimensional arrangement of the molecular fragments invo…

Guanineepitope/paratope recognitionOrganic ChemistryGeneral Chemistryc-Myc promotermolecular dynamicsCatalysisguanine quadruplexG-QuadruplexesEpitopesDARPinProto-Oncogene Proteins c-bcl-2Settore CHIM/03 - Chimica Generale E InorganicaNucleic AcidsHumansDesigned Ankyrin Repeat ProteinsBinding Sites AntibodyPeptides
researchProduct

Never Cared for What They Do: High Structural Stability of Guanine-Quadruplexes in the Presence of Strand-Break Damage

2022

DNA integrity is an important factor that assures genome stability and, more generally, the viability of cells and organisms. In the presence of DNA damage, the normal cell cycle is perturbed when cells activate their repair processes. Although efficient, the repair system is not always able to ensure complete restoration of gene integrity. In these cases, mutations not only may occur, but the accumulation of lesions can either lead to carcinogenesis or reach a threshold that induces apoptosis and programmed cell death. Among the different types of DNA lesions, strand breaks produced by ionizing radiation are the most toxic due to the inherent difficultly of repair, which may lead to genomi…

DNA RepairOrganic Chemistryguanine quadruplexes; DNA strand breaks; molecular modeling and simulationPharmaceutical ScienceDNAGenomic InstabilityAnalytical ChemistryG-Quadruplexesmolecular modeling and simulationChemistry (miscellaneous)Settore CHIM/03 - Chimica Generale E InorganicaDrug DiscoveryDNA strand breaksMolecular MedicineHumansPhysical and Theoretical Chemistryguanine quadruplexesDNA Damage
researchProduct

Molecular basis of SARS-CoV-2 infection and rational design of potential antiviral agents: Modeling and simulation approaches

2020

International audience; The emergence in late 2019 of the coronavirus SARS-CoV-2 has resulted in the breakthrough of the COVID-19 pandemic that is presently affecting a growing number of countries. The development of the pandemic has also prompted an unprecedented effort of the scientific community to understand the molecular bases of the virus infection and to propose rational drug design strategies able to alleviate the serious COVID-19 morbidity. In this context, a strong synergy between the structural biophysics and molecular modeling and simulation communities has emerged, resolving at the atomistic level the crucial protein apparatus of the virus and revealing the dynamic aspects of k…

0301 basic medicineComputer sciencedrug designIn silicoPneumonia Viralmembrane fusioncoronavirusReviewsDrug designComputational biologyMolecular Dynamics SimulationViral Nonstructural Proteinsmedicine.disease_causespike proteinAntiviral AgentsMolecular Docking SimulationBiochemistry[SPI.AUTO]Engineering Sciences [physics]/AutomaticModeling and simulationBetacoronavirus03 medical and health sciencesPandemicmedicineHumansstructural biophysicsPandemicsCoronavirus030102 biochemistry & molecular biologySARS-CoV-2free-energy methodsmolecular modelingRational designCOVID-19General ChemistryVirus InternalizationSARS unique domainmolecular dynamics3. Good healthMolecular Docking Simulation030104 developmental biologyDocking (molecular)Settore CHIM/03 - Chimica Generale E InorganicaSpike Glycoprotein CoronavirusdockingproteasesCoronavirus Infections
researchProduct