0000000000210355
AUTHOR
Horst Knöckel
The ground electronic state of KCs studied by Fourier transform spectroscopy
We present here the first analysis of laser induced fluorescence (LIF) of the KCs molecule obtaining highly accurate data and perform a direct potential construction for the X (1)Sigma(+) ground state in a wide range of internuclear distances. KCs molecules were produced by heating a mixture of K and Cs metals in a heat pipe at a temperature of about 270 degrees C. KCs fluorescence was induced by different laser sources: the 454.5, 457.9, 465.8, and 472.7 nm lines of an Ar(+) laser, a dye laser with Rhodamine 6G dye (excitation at around 16 870 cm(-1)), and 850 and 980 nm diode lasers (11 500-11 900 and 10 200-10 450 cm(-1) tuning ranges, respectively). The LIF to the ground state was recor…
Potentials for modeling cold collisions between Na (3S) and Rb (5S) atoms
The experimental characterization of the electronic states correlated to the asymptote of ground state Na (3S) and Rb (5S) atoms was expanded by spectroscopic data on $a\phantom{\rule{0.2em}{0ex}}^{3}\ensuremath{\Sigma}^{+}$ state levels using a high resolution Fourier transform spectroscopy technique. The hyperfine splitting of the $a\phantom{\rule{0.2em}{0ex}}^{3}\ensuremath{\Sigma}^{+}$ state levels was partially resolved and analyzed for both $\mathrm{Na}\phantom{\rule{0.2em}{0ex}}^{85}\mathrm{Rb}$ and $\mathrm{Na}\phantom{\rule{0.2em}{0ex}}^{87}\mathrm{Rb}$ isotopomers. Transitions to high lying levels of the $a\phantom{\rule{0.2em}{0ex}}^{3}\ensuremath{\Sigma}^{+}$ and $X\phantom{\rul…
High resolution spectroscopy and potential determination of the (3)1Pi state of NaCs.
The (3)(1)Pi state of the NaCs molecule was studied by high resolution Fourier-transform spectroscopy. The (3)(1)Pi--X (1)Sigma(+) laser induced fluorescence was excited by an Ar(+) ion laser or by a single-mode frequency-doubled cw Nd:YAG laser. The presence of argon buffer gas yielded rich rotational relaxation spectra allowing to enlarge the data set for the (3)(1)Pi state term values, as well as to observe Lambda splittings in a wide range of vibrational (v(')) and rotational (J(')) quantum numbers. The data field includes about 820 energy levels of (3)(1)Pi NaCs in the range from v(')=0 to 37 and from J(')=3 to 190, which corresponds to ca. 95% of the potential well depth. Direct fit o…
The coupling of the X1Σ+and a3Σ+states of the atom pair Na + Cs and modelling cold collisions
The states X1?+ and a3?+ correlated to the ground-state asymptote of Na (3s) and Cs (6s) atoms have been experimentally investigated using high resolution Fourier-transform spectroscopy. The hyperfine splitting of the a3?+ state levels is partially resolved. Transitions to asymptotic vibrational levels of the a3?+ and X1?+ states were recorded simultaneously. The joint evaluation of the data of both the a3?+ and the X1?+ states allows us to determine accurate potential energy curves of both electronic states. Coupled-channels calculations are finally applied for deriving long range dispersion parameters and the exchange contribution of the molecular potentials, yielding a reliable descripti…
Coupling of theXΣ+1andaΣ+3states ofKRb
A comprehensive study of the electronic states at the $4s+5s$ asymptote in $\mathrm{KRb}$ is presented. Abundant spectroscopic data on the $a\phantom{\rule{0.2em}{0ex}}^{3}\ensuremath{\Sigma}^{+}$ state were collected by Fourier-transform spectroscopy, which allows one to determine an accurate experimental potential energy curve up to $14.8\phantom{\rule{0.3em}{0ex}}\mathrm{\AA{}}$. The existing data set [C. Amiot et al., J. Chem. Phys. 112, 7068 (2000)] on the ground state $X\phantom{\rule{0.2em}{0ex}}^{1}\ensuremath{\Sigma}^{+}$ was extended by several additional levels lying close to the atomic asymptote. In a coupled channels fitting routine complete molecular potentials for both electr…
Deperturbation treatment of theAΣ+1–bΠ3complex of NaRb and prospects for ultracold molecule formation inXΣ+1(v=0;J=0)
High resolution Fourier transform spectra (FTS) of laser induced fluorescence (LIF) of $C\phantom{\rule{0.2em}{0ex}}^{1}\ensuremath{\Sigma}^{+};D\phantom{\rule{0.2em}{0ex}}^{1}\ensuremath{\Pi}\ensuremath{\rightarrow}A\phantom{\rule{0.2em}{0ex}}^{1}\ensuremath{\Sigma}^{+}--b\phantom{\rule{0.2em}{0ex}}^{3}\ensuremath{\Pi}$ and $A\phantom{\rule{0.2em}{0ex}}^{1}\ensuremath{\Sigma}^{+}--b\phantom{\rule{0.2em}{0ex}}^{3}\ensuremath{\Pi}\ensuremath{\rightarrow}X\phantom{\rule{0.2em}{0ex}}^{1}\ensuremath{\Sigma}^{+}$ transitions in ${\mathrm{Na}}^{85}\mathrm{Rb}$ and ${\mathrm{Na}}^{87}\mathrm{Rb}$ were obtained. An analysis of the direct LIF spectra together with the rotational relaxation satellite…
Singlet and triplet potentials of the ground-state atom pair Rb+Cs studied by Fourier-transform spectroscopy
A comprehensive study of the $X {}^{1}\ensuremath{\Sigma}{}^{+}$ and $a {}^{3}\ensuremath{\Sigma}{}^{+}$ electronic states of the Rb and Cs atom pair in RbCs is presented. Abundant spectroscopic data for the $^{85}\mathrm{Rb}$$^{133}\mathrm{Cs}$ and $^{87}\mathrm{Rb}$$^{133}\mathrm{Cs}$ isotopologues were obtained from Fourier-transform spectra of laser-induced fluorescence (LIF) from the $B {}^{1}\ensuremath{\Pi}$ and $(4){}^{1}\ensuremath{\Sigma}{}^{+}$ states to the $a {}^{3}\ensuremath{\Sigma}{}^{+}$ (4549 transitions) and $X {}^{1}\ensuremath{\Sigma}{}^{+}$ (15 709 transitions) states. The $X {}^{1}\ensuremath{\Sigma}{}^{+}$ state data were complemented by about 15 500 transitions obta…
The B 1Pi state of NaCs: high resolution laser induced fluorescence spectroscopy and potential construction.
The lowest (1)Pi state of the NaCs molecule, the B(1)(1)Pi state, was studied using a dye laser for inducing fluorescence that was resolved by a high resolution Fourier-transform spectrometer. The presence of argon buffer gas yielded rich rotational relaxation spectra allowing to enlarge the data set for the B(1)(1)Pi state, to obtain Lambda-splittings and to reveal numerous local perturbations. 543 weakly perturbed energy levels for rotational quantum numbers from J(')=5 to 168 and vibrational quantum numbers from v(')=0 to 25, which cover about 87% of the potential well depth, were used for a direct pointwise fit of the potential energy curve applying the inverted perturbation approach me…
Long-range coupling ofX1Σ+anda3Σ+states of the atom pairK+Cs
The potential of the ground state of NaRb
The X$^{1}\Sigma ^{+}$ state of NaRb was studied by Fourier transform spectroscopy. An accurate potential energy curve was derived from more than 8800 transitions in isotopomers $^{23}$Na$^{85}$Rb and $^{23}$Na$^{87}$Rb. This potential reproduces the experimental observations within their uncertainties of 0.003 \rcm to 0.007 \rcm. The outer classical turning point of the last observed energy level ($v''=76$, $J''=27$) lies at $\approx 12.4$ \AA, leading to a energy of 4.5 \rcm below the ground state asymptote.