0000000000210358
AUTHOR
A. Pashov
The ground electronic state of KCs studied by Fourier transform spectroscopy
We present here the first analysis of laser induced fluorescence (LIF) of the KCs molecule obtaining highly accurate data and perform a direct potential construction for the X (1)Sigma(+) ground state in a wide range of internuclear distances. KCs molecules were produced by heating a mixture of K and Cs metals in a heat pipe at a temperature of about 270 degrees C. KCs fluorescence was induced by different laser sources: the 454.5, 457.9, 465.8, and 472.7 nm lines of an Ar(+) laser, a dye laser with Rhodamine 6G dye (excitation at around 16 870 cm(-1)), and 850 and 980 nm diode lasers (11 500-11 900 and 10 200-10 450 cm(-1) tuning ranges, respectively). The LIF to the ground state was recor…
Potentials for modeling cold collisions between Na (3S) and Rb (5S) atoms
The experimental characterization of the electronic states correlated to the asymptote of ground state Na (3S) and Rb (5S) atoms was expanded by spectroscopic data on $a\phantom{\rule{0.2em}{0ex}}^{3}\ensuremath{\Sigma}^{+}$ state levels using a high resolution Fourier transform spectroscopy technique. The hyperfine splitting of the $a\phantom{\rule{0.2em}{0ex}}^{3}\ensuremath{\Sigma}^{+}$ state levels was partially resolved and analyzed for both $\mathrm{Na}\phantom{\rule{0.2em}{0ex}}^{85}\mathrm{Rb}$ and $\mathrm{Na}\phantom{\rule{0.2em}{0ex}}^{87}\mathrm{Rb}$ isotopomers. Transitions to high lying levels of the $a\phantom{\rule{0.2em}{0ex}}^{3}\ensuremath{\Sigma}^{+}$ and $X\phantom{\rul…
The coupling of the X1Σ+and a3Σ+states of the atom pair Na + Cs and modelling cold collisions
The states X1?+ and a3?+ correlated to the ground-state asymptote of Na (3s) and Cs (6s) atoms have been experimentally investigated using high resolution Fourier-transform spectroscopy. The hyperfine splitting of the a3?+ state levels is partially resolved. Transitions to asymptotic vibrational levels of the a3?+ and X1?+ states were recorded simultaneously. The joint evaluation of the data of both the a3?+ and the X1?+ states allows us to determine accurate potential energy curves of both electronic states. Coupled-channels calculations are finally applied for deriving long range dispersion parameters and the exchange contribution of the molecular potentials, yielding a reliable descripti…
Coupling of theXΣ+1andaΣ+3states ofKRb
A comprehensive study of the electronic states at the $4s+5s$ asymptote in $\mathrm{KRb}$ is presented. Abundant spectroscopic data on the $a\phantom{\rule{0.2em}{0ex}}^{3}\ensuremath{\Sigma}^{+}$ state were collected by Fourier-transform spectroscopy, which allows one to determine an accurate experimental potential energy curve up to $14.8\phantom{\rule{0.3em}{0ex}}\mathrm{\AA{}}$. The existing data set [C. Amiot et al., J. Chem. Phys. 112, 7068 (2000)] on the ground state $X\phantom{\rule{0.2em}{0ex}}^{1}\ensuremath{\Sigma}^{+}$ was extended by several additional levels lying close to the atomic asymptote. In a coupled channels fitting routine complete molecular potentials for both electr…
The coupling of the X$^{1}\Sigma ^{+}$ and a$^{3}\Sigma ^{+}$ states of KRb
A comprehensive study of the electronic states at the 4s+5s asymptote in KRb is presented. Abundant spectroscopic data on the \astate state were collected by Fourier-transform spectroscopy which allow to determine an accurate experimental potential energy curve up to 14.8 \AA . The existing data set (C. Amiot et al. J. Chem. Phys. 112, 7068 (2000)) on the ground state \Xstate was extended by several additional levels lying close to the atomic asymptote. In a coupled channels fitting routine complete molecular potentials for both electronic states were fitted. Along with the line frequencies of the molecular transitions, recently published positions of Feshbach resonances in $^{40}$K and $^{…
The potential of the ground state of NaRb
The X$^{1}\Sigma ^{+}$ state of NaRb was studied by Fourier transform spectroscopy. An accurate potential energy curve was derived from more than 8800 transitions in isotopomers $^{23}$Na$^{85}$Rb and $^{23}$Na$^{87}$Rb. This potential reproduces the experimental observations within their uncertainties of 0.003 \rcm to 0.007 \rcm. The outer classical turning point of the last observed energy level ($v''=76$, $J''=27$) lies at $\approx 12.4$ \AA, leading to a energy of 4.5 \rcm below the ground state asymptote.