0000000000210416
AUTHOR
Younes Abdi
Linear fusion of interrupted reports in cooperative spectrum sensing for cognitive radio networks
Interrupted reporting has recently been introduced as an effective method to increase the energy efficiency of cooperative spectrum sensing schemes in cognitive radio networks. In this paper, joint optimization of the reporting and fusion phases in a cooperative sensing with interrupted reporting is considered. This optimization aims at finding the best weights used at the fusion center to construct a linear fusion of the received interrupted reports, jointly with Bernoulli distributions governing the statistical behavior of the interruptions. The problem is formulated by using the deflection criterion and as a nonconvex quadratic program which is then solved for a suboptimal solution, in a…
The Max-Product Algorithm Viewed as Linear Data-Fusion: A Distributed Detection Scenario
In this paper, we disclose the statistical behavior of the max-product algorithm configured to solve a maximum a posteriori (MAP) estimation problem in a network of distributed agents. Specifically, we first build a distributed hypothesis test conducted by a max-product iteration over a binary-valued pairwise Markov random field and show that the decision variables obtained are linear combinations of the local log-likelihood ratios observed in the network. Then, we use these linear combinations to formulate the system performance in terms of the false-alarm and detection probabilities. Our findings indicate that, in the hypothesis test concerned, the optimal performance of the max-product a…
Modeling and Mitigating Errors in Belief Propagation for Distributed Detection
We study the behavior of the belief-propagation (BP) algorithm affected by erroneous data exchange in a wireless sensor network (WSN). The WSN conducts a distributed multidimensional hypothesis test over binary random variables. The joint statistical behavior of the sensor observations is modeled by a Markov random field whose parameters are used to build the BP messages exchanged between the sensing nodes. Through linearization of the BP message-update rule, we analyze the behavior of the resulting erroneous decision variables and derive closed-form relationships that describe the impact of stochastic errors on the performance of the BP algorithm. We then develop a decentralized distribute…
Random Interruptions in Cooperation for Spectrum Sensing in Cognitive Radio Networks
In this paper, a new cooperation structure for spectrum sensing in cognitive radio networks is proposed which outperforms the existing commonly-used ones in terms of energy efficiency. The efficiency is achieved in the proposed design by introducing random interruptions in the cooperation process between the sensing nodes and the fusion center, along with a compensation process at the fusion center. Regarding the hypothesis testing problem concerned, first, the proposed system behavior is thoroughly analyzed and its associated likelihood-ratio test (LRT) is provided. Next, based on a general linear fusion rule, statistics of the global test summary are derived and the sensing quality is cha…
Optimization of Linearized Belief Propagation for Distributed Detection
In this paper, we investigate distributed inference schemes, over binary-valued Markov random fields, which are realized by the belief propagation (BP) algorithm. We first show that a decision variable obtained by the BP algorithm in a network of distributed agents can be approximated by a linear fusion of all the local log-likelihood ratios. The proposed approach clarifies how the BP algorithm works, simplifies the statistical analysis of its behavior, and enables us to develop a performance optimization framework for the BP-based distributed inference systems. Next, we propose a blind learning-adaptation scheme to optimize the system performance when there is no information available a pr…