6533b872fe1ef96bd12d2f36

RESEARCH PRODUCT

Optimization of Linearized Belief Propagation for Distributed Detection

Tapani RistaniemiYounes Abdi

subject

hajautetut järjestelmätComputer scienceInference02 engineering and technologyBelief propagation01 natural sciencesMarkov random fieldsalgoritmit0202 electrical engineering electronic engineering information engineering0101 mathematicsElectrical and Electronic Engineeringtilastolliset mallitdistributed systemsbelief-propagation algorithmRandom fieldMarkov chainspectrum sensingverkkoteoriasignaalinkäsittely010102 general mathematicslinear data-fusionApproximation algorithm020206 networking & telecommunicationsCognitive radioblind signal processingAlgorithmWireless sensor networkRandom variablestatistical inference

description

In this paper, we investigate distributed inference schemes, over binary-valued Markov random fields, which are realized by the belief propagation (BP) algorithm. We first show that a decision variable obtained by the BP algorithm in a network of distributed agents can be approximated by a linear fusion of all the local log-likelihood ratios. The proposed approach clarifies how the BP algorithm works, simplifies the statistical analysis of its behavior, and enables us to develop a performance optimization framework for the BP-based distributed inference systems. Next, we propose a blind learning-adaptation scheme to optimize the system performance when there is no information available a priori describing the statistical behavior of the wireless environment concerned. In addition, we propose a blind threshold adaptation method to guarantee a certain performance level in a BP-based distributed detection system. To clarify the points discussed, we design a novel linear-BP-based distributed spectrum sensing scheme for cognitive radio networks and illustrate the performance improvement obtained, over an existing BP-based detection method, via computer simulations. peerReviewed

http://urn.fi/URN:NBN:fi:jyu-202005143201