0000000000211089

AUTHOR

Federico Massa

0000-0002-9427-3418

showing 8 related works from this author

The endocannabinoid system controls key epileptogenic circuits in the hippocampus.

2006

SummaryBalanced control of neuronal activity is central in maintaining function and viability of neuronal circuits. The endocannabinoid system tightly controls neuronal excitability. Here, we show that endocannabinoids directly target hippocampal glutamatergic neurons to provide protection against acute epileptiform seizures in mice. Functional CB1 cannabinoid receptors are present on glutamatergic terminals of the hippocampal formation, colocalizing with vesicular glutamate transporter 1 (VGluT1). Conditional deletion of the CB1 gene either in cortical glutamatergic neurons or in forebrain GABAergic neurons, as well as virally induced deletion of the CB1 gene in the hippocampus, demonstrat…

MaleVesicular glutamate transporter 1HUMDISEASEHippocampusGene ExpressionHippocampal formationHippocampusMembrane Potentialschemistry.chemical_compoundMice0302 clinical medicineReceptor Cannabinoid CB1Premovement neuronal activitygamma-Aminobutyric Acid0303 health sciencesKainic AcidbiologyBehavior AnimalReverse Transcriptase Polymerase Chain Reactionmusculoskeletal neural and ocular physiologyGeneral NeurosciencePyramidal CellsCalcium Channel BlockersEndocannabinoid systemlipids (amino acids peptides and proteins)psychological phenomena and processesmedicine.drugKainic acidNeuroscience(all)MorpholinesGlutamic AcidMice TransgenicNaphthalenesMOLNEUROgamma-Aminobutyric acid03 medical and health sciencesGlutamatergicCannabinoid Receptor ModulatorsmedicineAnimals030304 developmental biologyAnalysis of VarianceEpilepsyBenzoxazinesMice Inbred C57BLnervous systemchemistryCalcium-Calmodulin-Dependent Protein KinasesVesicular Glutamate Transport Protein 1biology.proteinNerve NetSYSNEUROCalcium-Calmodulin-Dependent Protein Kinase Type 2Neuroscience030217 neurology & neurosurgeryEndocannabinoidsNeuron
researchProduct

Alterations in the Hippocampal Endocannabinoid System in Diet-Induced Obese Mice

2010

The endocannabinoid (eCB) system plays central roles in the regulation of food intake and energy expenditure. Its alteration in activity contributes to the development and maintenance of obesity. Stimulation of the cannabinoid receptor type 1 (CB1receptor) increases feeding, enhances reward aspects of eating, and promotes lipogenesis, whereas its blockade decreases appetite, sustains weight loss, increases insulin sensitivity, and alleviates dysregulation of lipid metabolism. The hypothesis has been put forward that the eCB system is overactive in obesity. Hippocampal circuits are not directly involved in the neuronal control of food intake and appetite, but they play important roles in hed…

Malemedicine.medical_specialtyPolyunsaturated Alkamidesmedicine.medical_treatmentmedia_common.quotation_subjectArachidonic AcidsBiologyHippocampusArticlegamma-Aminobutyric acidGlyceridesMice03 medical and health sciences0302 clinical medicineReceptor Cannabinoid CB1Internal medicineCannabinoid Receptor ModulatorsCannabinoid receptor type 1medicineAnimalsObesityReceptorgamma-Aminobutyric Acid030304 developmental biologymedia_commonMice KnockoutNeurons0303 health sciencesLong-Term Synaptic DepressionGeneral NeuroscienceAppetiteDietary FatsEndocannabinoid systemMice Inbred C57BLDisease Models AnimalLipoprotein LipaseEndocrinologynervous systemSynapsesSynaptic plasticitylipids (amino acids peptides and proteins)CannabinoidDiet-induced obese030217 neurology & neurosurgeryEndocannabinoidsmedicine.drugThe Journal of Neuroscience
researchProduct

The endocannabinoid system controls food intake via olfactory processes

2014

Comment in Sensory systems: the hungry sense. [Nat Rev Neurosci. 2014] Inhaling: endocannabinoids and food intake. [Nat Neurosci. 2014]; International audience; Hunger arouses sensory perception, eventually leading to an increase in food intake, but the underlying mechanisms remain poorly understood. We found that cannabinoid type-1 (CB1) receptors promote food intake in fasted mice by increasing odor detection. CB1 receptors were abundantly expressed on axon terminals of centrifugal cortical glutamatergic neurons that project to inhibitory granule cells of the main olfactory bulb (MOB). Local pharmacological and genetic manipulations revealed that endocannabinoids and exogenous cannabinoid…

MaleOlfactory systemMESH: Olfactory PerceptionCannabinoid receptorMESH: Feedback Physiological[SDV]Life Sciences [q-bio]medicine.medical_treatmentMESH: Cannabinoid Receptor AgonistsMESH: EndocannabinoidsMESH: Receptor Cannabinoid CB1Synaptic TransmissionMESH: Mice KnockoutMESH: EatingEatingMiceOlfactory bulbReceptor Cannabinoid CB1MESH: AnimalsFeedback PhysiologicalMice Knockoutmusculoskeletal neural and ocular physiologyGeneral Neurosciencedigestive oral and skin physiologyOlfactory PathwaysEndocannabinoid systemMESH: Feeding Behaviorlipids (amino acids peptides and proteins)psychological phenomena and processesMESH: Olfactory BulbBiologyInhibitory postsynaptic potentialGlutamatergicMESH: Mice Inbred C57BLMESH: Synaptic TransmissionmedicineAnimalsMESH: MiceCannabinoid Receptor AgonistsFeeding BehaviorOlfactory PerceptionMESH: MaleOlfactory bulbMice Inbred C57BLnervous systemOdorFeeding behaviourCannabinoid[SDV.AEN]Life Sciences [q-bio]/Food and NutritionNeuroscienceMESH: Olfactory PathwaysEndocannabinoidsNature Neuroscience
researchProduct

Understanding Cannabinoid Psychoactivity with Mouse Genetic Models

2007

Marijuana and its main psychotropic ingredient Δ9-tetrahydrocannabinol (THC) exert a plethora of psychoactive effects through the activation of the neuronal cannabinoid receptor type 1 (CB1), which is expressed by different neuronal subpopulations in the central nervous system. The exact neuroanatomical substrates underlying each effect of THC are, however, not known. We tested locomotor, hypothermic, analgesic, and cataleptic effects of THC in conditional knockout mouse lines, which lack the expression of CB1 in different neuronal subpopulations, including principal brain neurons, GABAergic neurons (those that release γ aminobutyric acid), cortical glutamatergic neurons, and neurons expres…

MaleMESH: Body TemperatureCannabinoid receptormedicine.medical_treatmentGene ExpressionMESH: Receptor Cannabinoid CB1NeocortexMESH: gamma-Aminobutyric AcidMESH: CatalepsyPharmacologyHippocampusMESH: Mice KnockoutMESH: Corpus StriatumBody TemperatureMESH: Autonomic Nervous SystemMESH: NeocortexMice0302 clinical medicineReceptor Cannabinoid CB1MESH: Behavior AnimalCannabinoid receptor type 1MESH: AnimalsMESH: Gene SilencingDronabinolMESH: NociceptorsBiology (General)gamma-Aminobutyric AcidMice Knockout0303 health sciencesBehavior Animalmusculoskeletal neural and ocular physiologyGeneral NeuroscienceMESH: Pain ThresholdNociceptorsMESH: Glutamic AcidMESH: InterneuronsMESH: Motor Activity3. Good healthGABAergicMESH: TetrahydrocannabinolGeneral Agricultural and Biological SciencesResearch Articlemedicine.drugPain ThresholdMESH: Gene ExpressionMESH: Psychotropic DrugsQH301-705.5Glutamic AcidMotor ActivityBiologyAutonomic Nervous SystemGeneral Biochemistry Genetics and Molecular Biologygamma-Aminobutyric acid03 medical and health sciencesGlutamatergicDopamine receptor D1InterneuronsCannabinoid Receptor Modulatorsmental disorders[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologymedicineAnimalsGenetic Predisposition to Disease[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyGene SilencingTetrahydrocannabinolMESH: MiceAnesthesiology and Pain Management030304 developmental biologyPharmacologyCatalepsyPsychotropic DrugsModels GeneticGeneral Immunology and MicrobiologyCannabinoidsIllicit Drugsorganic chemicalsMESH: MaleCorpus StriatumPrimerDisease Models Animalnervous systemCannabinoidNervous System Diseases030217 neurology & neurosurgeryNeurosciencePLoS Biology
researchProduct

Mitochondrial CB1 receptors regulate neuronal energy metabolism

2012

The mammalian brain is one of the organs with the highest energy demands, and mitochondria are key determinants of its functions. Here we show that the type-1 cannabinoid receptor (CB(1)) is present at the membranes of mouse neuronal mitochondria (mtCB(1)), where it directly controls cellular respiration and energy production. Through activation of mtCB(1) receptors, exogenous cannabinoids and in situ endocannabinoids decreased cyclic AMP concentration, protein kinase A activity, complex I enzymatic activity and respiration in neuronal mitochondria. In addition, intracellular CB(1) receptors and mitochondrial mechanisms contributed to endocannabinoid-dependent depolarization-induced suppres…

0303 health sciencesCannabinoid receptorCellular respirationGeneral Neurosciencemedicine.medical_treatmentBiologyMitochondrion7. Clean energyEndocannabinoid system3. Good healthCell biology03 medical and health sciences0302 clinical medicinenervous systemMechanism of actionmedicineCannabinoidmedicine.symptomReceptor030217 neurology & neurosurgeryIntracellular030304 developmental biologyNature Neuroscience
researchProduct

Towards the Design of Robotic Drivers for Full-Scale Self-Driving Racing Cars

2019

Autonomous vehicles are undergoing a rapid development thanks to advances in perception, planning and control methods and technologies achieved in the last two decades. Moreover, the lowering costs of sensors and computing platforms are attracting industrial entities, empowering the integration and development of innovative solutions for civilian use. Still, the development of autonomous racing cars has been confined mainly to laboratory studies and small to middle scale vehicles. This paper tackles the development of a planning and control framework for an electric full scale autonomous racing car, which is an absolute novelty in the literature, upon which we report our preliminary experim…

0209 industrial biotechnologyAutomotive self-driving car control roboticsbusiness.industryComputer scienceScale (chemistry)Control (management)Automotive industryRobotics02 engineering and technologyTrack (rail transport)Vehicle dynamicsModel predictive control020901 industrial engineering & automationSettore ING-INF/04 - Automatica020204 information systems0202 electrical engineering electronic engineering information engineeringSystems engineeringArtificial intelligencebusiness2019 International Conference on Robotics and Automation (ICRA)
researchProduct

A Planning and Control System for Self-Driving Racing Vehicles

2018

Autonomous robots will soon enter our everyday life as self-driving cars. These vehicles are designed to behave according to certain sets of cooperative rules, such as traffic ones, and to respond to events that might be unpredictable in their occurrence but predictable in their nature, such as a pedestrian suddenly crossing a street, or another car losing control. As civilian autonomous cars will cross the road, racing autonomous cars are under development, which will require superior Artificial Intelligence Drivers to perform in structured but uncertain conditions. We describe some preliminary results obtained during the development of a planning and control system as key elements of an A…

Operations researchRenewable Energy Sustainability and the EnvironmentComputer scienceControl (management)Energy Engineering and Power TechnologyComputer Science Applications1707 Computer Vision and Pattern RecognitionAutonomous robots self-driving vehicles racing robotics challengePedestrianIndustrial and Manufacturing EngineeringCompetition (economics)self-driving vehiclesAutonomous robotracingComputer Networks and CommunicationSettore ING-INF/04 - AutomaticaArtificial IntelligenceAutonomous robotsControl systemself-driving vehicleTrajectoryKey (cryptography)Robotrobotics challengeEveryday lifeInstrumentation2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI)
researchProduct

Cannabinoid CB1 receptor in dorsal telencephalic glutamatergic neurons: distinctive sufficiency for hippocampus-dependent and amygdala-dependent syna…

2013

A major goal in current neuroscience is to understand the causal links connecting protein functions, neural activity, and behavior. The cannabinoid CB1 receptor is expressed in different neuronal subpopulations, and is engaged in fine-tuning excitatory and inhibitory neurotransmission. Studies using conditional knock-out mice revealed necessary roles of CB1 receptor expressed in dorsal telencephalic glutamatergic neurons in synaptic plasticity and behavior, but whether this expression is also sufficient for brain functions is still to be determined. We applied a genetic strategy to reconstitute full wild-type CB1 receptor functions exclusively in dorsal telencephalic glutamatergic neurons a…

TelencephalonCannabinoid receptorLightBlotting WesternHippocampusGlutamic AcidBiologyNeurotransmissionAnxietyReal-Time Polymerase Chain ReactionAmygdalaHippocampus03 medical and health sciencesGlutamatergicMice0302 clinical medicineReceptor Cannabinoid CB1medicineExcitatory Amino Acid AgonistsAnimalsFear conditioning030304 developmental biologyMice KnockoutNeurons0303 health sciencesKainic AcidNeuronal PlasticityBehavior AnimalGeneral NeuroscienceArticlesAmygdalaEndocannabinoid systemImmunohistochemistryElectrophysiological PhenomenaMice Inbred C57BLmedicine.anatomical_structurenervous systemSynaptic plasticitySynapsesRNAlipids (amino acids peptides and proteins)Neuroscience030217 neurology & neurosurgerypsychological phenomena and processesJournal of Neuroscience
researchProduct