0000000000214685
AUTHOR
Ingolf Gath
Expression and Expressional Control of Nitric Oxide Synthases in Various Cell Types
Publisher Summary Nitric oxide (NO) can produce posttranslational modifications of proteins (via ADP ribosylation) and is capable of destroying parasites and tumor cells by inhibiting iron-containing enzymes or directly interacting with the DNA of these cells. In view of this multitude of functions of NO, it is important to understand how cells accomplish and regulate their NO production. Three isozymes of NOS have been identified, and their protein, cDNA, and genomic DNA structures have been elucidated. In humans NOS I, II, and III are encoded by three different genes, located on chromosomes 12, 17, and 7 respectively. The cDNAs for these enzymes have been isolated. All NOS isozymes oxidiz…
Identification of the NO Synthase isoforms Expressed in Human Neutrophil Granulocytes, Megakaryocytes and Platelets
SummaryUsing Western blot and fluorescent immunocytochemistry, NOS III (or ecNOS) and NOS II (or iNOS), but no NOS I (or ncNOS), were identified in preparations of human platelets. Reverse-transcription polymerase chain reactions (RT-PCR) demonstrated NOS III mRNA, but no NOS II mRNA (which is short-lived) and no NOS I mRNA in platelets. Immunofluorescent staining of human bone marrow smears showed the presence of NOS III, but not NOS I in megakaryocytes. A subpopulation of megakaryocytes also expressed NOS II. In preparations of human neutrophils, immunocytochemistry demonstrated NOS I in all cells, whereas no NOS III was detected. The few NOS II positive cells were characterized as contam…
Activation of soluble guanylyl cyclase by YC-1 in aortic smooth muscle but not in ventricular myocardium from rat
1 The effects of YC-1 (3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole), an activator of soluble guanylyl cyclase, on tension, levels of cyclic GMP and cyclic AMP, and cardiac L-type Ca2+-current (ICa(L)) were investigated in aortic smooth muscle and ventricular heart muscle from rat. 2 YC-1 (0.1–30 μM) induced a concentration-dependent relaxation in aortic rings precontracted with phenylephrine (3 μM). The relaxant effects of YC-1 were reversed by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (30 μM; ODQ), potentiated by zaprinast (10 μM) and antagonized by Rp-8-Br-cGMPS (100 μM). 3 In ventricular heart muscle strips, YC-1 (30 μM) exhibited no effects on force of contraction (Fc) in the abse…
Effects of sodium butyrate on DNA content, glutathione S-transferase activities, cell morphology and growth characteristics of rat liver nonparenchymal epithelial cells in vitro
The effects of sodium butyrate, which has been shown to act as a differentiation promoting agent in several different tumor cell lines, were studied in a rat liver nonparenchymal epithelial cell line. Exposure of these cells to 3.75 mM butyrate resulted in an inhibition of cell proliferation and, at the same time, an increase in cell diameter (2- to 6-fold) and size of the nuclei (approximately 2-fold) after 3 days in culture. Binucleated cells arose, comprising approximately 12% of the cells investigated, and the number of cells with an abnormal set of chromosomes was increased. Intercellular communication, measured by dye transfer of Lucifer Yellow, was unchanged. From the various xenobio…
Colocalization but differential regulation of neuronal NO synthase and nicotinic acetylcholine receptor in C2C12 myotubes.
In mammalian skeletal muscle, neuronal-type nitric oxide synthase (nNOS) is found to be enriched at neuromuscular endplates. Here we demonstrate the colocalization of the nicotinic acetylcholine receptor (nAChR, stained with α-bungarotoxin) and nNOS (stained with a specific antibody) in murine C2C12myotubes. However, coimmunoprecipitation experiments demonstrated no evidence for a direct protein-protein association between the nAChR and nNOS in C2C12myotubes. An antibody to the α1-subunit of the nAChR did not coprecipitate nNOS, and an nNOS-specific antibody did not precipitate the α1-subunit of the nAChR. Treatment of mice with bacterial LPS downregulated the expression of nNOS in skeletal…
Purification of isoforms of nitric oxide synthase
Expressional downregulation of neuronal-type NO synthase I in guinea pig skeletal muscle in response to bacterial lipopolysaccharide
AbstractWe have investigated the expression of neuronal-type NO synthase I (NOS I) and inducible-type NOS II in guinea pig skeletal muscle (diaphragm). Expression of NOS I mRNA and protein was highest in muscle of specific pathogen-free animals, lower in normally bred animals, and lowest in lipopolysaccharide (LPS)-treated animals. NOS II mRNA and protein levels were highest in muscle of LPS-treated animals. Elevated NOS activity in muscle from LPS-treated animals was less susceptible to the NOS I-selective inhibitor NG-nitro-l-arginine. Expressional downregulation of NOS I in sepsis may have implications for contractile function of skeletal muscle.
Role of the Well-Known Basic and Recently Discovered Acidic Glutathione S-Transferases in the Control of Genotoxic Metabolites
Glutathione S-transferases (GSTs; E.C. 2. 5. 1. 18) are a family of enzymes which have increasingly attracted the interest of toxicologists, pharmacologists, biochemists and clinicians since their discovery in 1961 (1). Initially, GSTs were believed to serve as intracellular transport proteins for endogenous compounds with limited solubility in water, thus acting as an intracellular equivalent to albumin in blood plasma. In this assumed capacity of reversible binding and transport of various ligands, the corresponding protein was named ligandin (2). Following the discovery of abundant GST occurrence in most forms of aerobic life including plants, and the GST-catalysed conjugation of a wide …
Purification and Characterization of Acidic Glutathione S-Transferases (EC 2.5.1.18) from Rat Kidney
Glutathione S-transferases (EC 2.5.1.18) (GSTs) are present in almost every mammalian tissue and catalyze the conjugation of glutathione (GSH) with different electrophilic substrates (Habig et al. 1974). In contrast to this deactivation function of GSTs, they also appear to be involved in the activation of certain chemicals, and particularly halogenated compounds, in either the liver or extra-hepatic tissues (even the kidney) to nephrotoxic and potentially nephrocarcin-ogenic products (Anders et al. 1987, Dekant et al. 1986, Elfarra and Anders 1984, Igwe 1986). These previous results confirm the necessity of a deeper insight into the GSH conjugation system of the kidney: firstly, because of…
Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions.
Three isozymes of nitric oxide (NO) synthase (EC 1.14.13.39) have been identified and the cDNAs for these enzymes isolated. In humans, isozymes I (in neuronal and epithelial cells), II (in cytokine-induced cells), and III (in endothelial cells) are encoded for by three different genes located on chromosomes 12, 17, and 7, respectively. The deduced amino acid sequences of the human isozymes show less than 59% identity. Across species, amino acid sequences for each isoform are well conserved (> 90% for isoforms I and III, > 80% for isoform II). All isoforms use L-arginine and molecular oxygen as substrates and require the cofactors NADPH, 6(R)-5,6,7,8-tetrahydrobiopterin, flavin adenine…
Analysis of NO synthase expression in neuronal, astroglial and fibroblast-like derivatives differen-tiating from PCC7-Mzl embryonic carcinoma cells
We studied the expression of the NO synthase isoforms in an in vitro model of neural development using RT-PCR, Western blot and immu- nohistochemistry. Murine PCC7-Mzl cells (Jostock et al., Eur. J. Cell Biol. 76, 63–76,1998) differentiate in the presence of all-trans retinoic acid and dibutyryl cAMP along the neural pathway into neuron-like, fibroblast-like and astroglia-like cells. Undifferentiated cells showed immunofluorescent staining for neuronal-type NOSI and endothelial- type NOS III. This expression pattern was retained in those cells differ entiating into neurofilament- and tau protein-positive neuronal cells. Thymocyte alloantigen (Thyl.2/CD 90.2)-positive Fibroblasts, appearing …
NO synthase II in mouse skeletal muscle is associated with caveolin 3
The inducible-type NO synthase (NOS II; iNOS) is constitutively expressed in slow-twitch skeletal muscle fibres of guinea-pigs [Gath, Closs, Gödtel-Armbrust, Schmitt, Nakane, Wessler and Förstermann (1996) FASEB J. 10, 1614-1620]. Here we studied the expression of NOS II in skeletal muscle of wild-type and NOS II-deficient mice and investigated the molecular basis for the membrane association of this NOS in muscle. A basal expression of NOS II mRNA and protein was detected in skeletal muscle from untreated wild-type mice; expression increased when mice were treated with bacterial lipopolysaccharide (LPS). No NOS II was found in any tissue of untreated or LPS-treated NOS II-deficient mice. I…
Inducible NO synthase II and neuronal NO synthase I are constitutively expressed in different structures of guinea pig skeletal muscle: implications for contractile function
The expression of NOS isoforms was studied in guinea pig skeletal muscle at the mRNA and protein level, and the effect of NO on contractile response was examined. Ribonuclease protection analyses demonstrated NOS I and NOS II mRNAs in diaphragm and gastrocnemius muscle. In Western blots, NOS I and NOS II immunoreactivities were found in the particulate but not the soluble fraction of skeletal muscle. NOS activity was found almost exclusively in the particulate fraction. About 50% of this activity was Ca2+ independent. In immunohistochemistry, the anti-NOS I antibody stained distinct membrane regions of muscle fibers. The most intense staining was seen in neuromuscular endplates identified b…
Characterization of nitric oxide synthase isoforms expressed in different structures of the guinea pig cochlea.
Nitric oxide synthase (NOS) activity and NADPH diaphorase staining has previously been reported in mammalian cochlea. Here we demonstrate immunoreactivity for neuronal-type NOS I and endothelial-type NOS III in the cochlea of the guinea pig. NOS I immunoreactivity was seen in inner and outer hair cells, and spiral ganglion cells. Staining for NOS I was also shown in basal and intermediate cells of the stria vascularis, spiral ligament cells, and the media of vessels near the modiolus. An antibody to NOS III stained primarily vascular endothelial cells. Some NOS III immunoreactivity was also detected in spiral ganglion cells. An antibody to the inducible-type NOS II did not stain any structu…