0000000000217177

AUTHOR

Giovanni Mattei

showing 3 related works from this author

Double implantation in silica glass for metal cluster composite formation: a study by synchrotron radiation techniques

2001

Silica glass containing metal clusters is studied for both basic and applied aspects, related to the physics of cluster formation and to the optical properties of these materials. To obtain such composite structure, Cu+ Ni, Au+ Cu, Au+ Ag, Cu+ Co, and Cu+ Ag sequential implantations in fused silica were realized. The resulting systems, after possible annealing in various atmospheres, were studied by synchrotron radiation-based techniques, namely, extended X-ray absorption fine structure (EXAFS) spectroscopy, grazing incidence X-ray diffraction (GIXRD), and grazing incidence small angle X-ray scattering (GISAXS). The unique potential of these techniques is the capability to investigate dilut…

Materials scienceExtended X-ray absorption fine structureScatteringSmall-angle X-ray scatteringAnalytical chemistrySynchrotron radiationCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCrystallographyIon implantationMaterials ChemistryCeramics and CompositesCluster (physics)Grazing-incidence small-angle scatteringSpectroscopyJournal of Non-Crystalline Solids
researchProduct

On the use of grazing-incidence small-angle X-ray scattering (GISAXS) in the morphological study of ion-implanted materials.

2004

Grazing-incidence small-angle X-ray scattering has become a widely used technique for the morphological analysis of surface systems. Here it is show how this technique can be applied to a buried system, like metallic clusters in glass obtained by ion implantation. The optimization of the data-collection geometry is described as well as the details of the quantitative data analysis. An experimental example on Cu + Au-implanted glasses shows the potentiality of the technique.

Nuclear and High Energy PhysicsRadiationAmorphous metalMaterials sciencebusiness.industryScatteringSmall-angle X-ray scatteringSynchrotron radiationSmall-angle neutron scatteringIonOpticsIon implantationGrazing-incidence small-angle scatteringIon implantation Surface plasmon resonance third-order opticalbusinessInstrumentationJournal of synchrotron radiation
researchProduct

Correlation between in situ structural and optical characterization of the semiconductor-to-metal phase transition of VO2 thin films on sapphire

2020

A detailed structural investigation of the semiconductor-to-metal transition (SMT) in vanadium dioxide thin films deposited on sapphire substrates by pulsed laser deposition was performed by in situ temperature-dependent X-ray diffraction (XRD) measurements. The structural results are correlated with those of infrared radiometry measurements in the SWIR (2.5-5 μm) and LWIR (8-10.6 μm) spectral ranges. The main results indicate a good agreement between XRD and optical analysis, therefore demonstrating that the structural transition from monoclinic to tetragonal phases is the dominating mechanism for controlling the global properties of the SMT transition. The picture that emerges is a SMT tr…

010302 applied physicsPhase transitionMaterials scienceTransition temperatureAnalytical chemistryPulsed laser depositionphase change material; VO202 engineering and technologyVO2 thin films021001 nanoscience & nanotechnology01 natural sciencesSettore ING-INF/01 - ElettronicaPulsed laser depositionTetragonal crystal systemVO20103 physical sciencesSapphireThermal hysteresisGeneral Materials ScienceCrystalliteThin film0210 nano-technologyphase change materialMonoclinic crystal systemSemiconductor-to-metal (SMT) transition
researchProduct