0000000000217783

AUTHOR

Johannes F.j. Engbersen

Development and in vitro Evaluation of Antigen-Loaded Poly(amidoamine) Nanoparticles for Respiratory Epithelium Applications

A poly(amidoamine) with disulfide linkages in the main chain and 4-hydroxybutyl and ω-carboxy-PEG groups (9:1 ratio) as side chains was prepared by Michael addition polymerization of cystamine bisacrylamide with 4-hydroxybutylamine and ω-carboxy-PEG-amine. To develop therapeutic protein formulations for improved delivery of antigen via the intranasal route, nanoparticles were prepared from this polymer by self-assembly with p24 or ovalbumin as the model proteins and CpG as the adjuvant. The nanoparticles incorporated the antigens and adjuvant from the feed solution with high efficiency (∼90 %) and have sizes of 112 and 169 nm, respectively, with low positive surface charge (∼+2 mV). Formula…

research product

Design and physicochemical characterization of poly(amidoamine) nanoparticles and the toxicological evaluation in human endothelial cells: applications to peptide delivery to the brain

In this study, we investigated nanoparticles formulated by self-assembly of a biodegradable poly(amidoamine) (PAA) and a fluorescently labeled peptide, in their capacity to internalize in endothelial cells and deliver the peptide, with possible applications for brain drug delivery. The nanoparticles were characterized in terms of size, surface charge, and loading efficiency, and were applied on human cerebral microvascular endothelial cells (hCMEC/D3) and human umbilical vein endothelial cells (Huvec) cells. Cell-internalization and cytotoxicity experiments showed that the PAA-based nanocomplexes were essentially nontoxic, and the peptide was successfully internalized into cells. The result…

research product

Bioresponsive poly(amidoamine)s designed for intracellular protein delivery.

Poly(amidoamine)s with bioreducible disulfide linkages in the main chain (SS-PAAs) and pH-responsive, negatively charged citraconate groups in the sidechain have been designed for effective intracellular delivery and release of proteins with a net positive charge at neutral pH. Using lysozyme as a cationic model protein these water soluble polymers efficiently self-assemble into nanocomplexes by charge attraction. At pH 5 (the endosomal pH) the amide linkages connecting the citraconate groups in the sidechains of the SS-PAAs are hydrolyzed by intramolecular catalysis, resulting in expulsion of the negative citraconate groups and formation of protonated amine groups, resulting in charge reve…

research product