0000000000221325

AUTHOR

Marco Zaru

showing 6 related works from this author

Protective effect of grape extract phospholipid vesicles against oxidative stress skin damages

2016

Abstract Grape extract rich in polyphenols (∼129 ± 32 mg of gallic acid equivalents per g of dry extract) was obtained from the pomaces of Cannonau grapes by homogenization in an ethanol/water mixture. The efficacy of ultrasounds in speeding up the extraction kinetics of polyphenols was demonstrated. The extract was incorporated in liposomes and PEVs (penetration enhancer containing vesicles) with Labrasol ® or Labrasol ® /ethanol. All the vesicles were spherical and predominantly unilamellar: liposomes were large (∼927 nm) and polydispersed (PI ∼0.56), while PEVs were small (∼140 nm) and fairly homogeneous (PI ∼0.3). Moreover, PEVs were able to incorporate a high amount of the extract (∼98…

LiposomeAntioxidantChromatographyEthanolmedicine.medical_treatmentVesiclefungiKineticsfood and beverages02 engineering and technology021001 nanoscience & nanotechnologymedicine.disease_cause030226 pharmacology & pharmacy03 medical and health scienceschemistry.chemical_compound0302 clinical medicineBiochemistrychemistryPolyphenolmedicineGallic acid0210 nano-technologyAgronomy and Crop ScienceOxidative stressIndustrial Crops and Products
researchProduct

From waste to health: sustainable exploitation of grape pomace seed extract to manufacture antioxidant, regenerative and prebiotic nanovesicles withi…

2020

AbstractPomace seed extract loaded vesicles were prepared as promising technological and green solution to exploit agri-food wastes and by-products, and develop high value-added products for human health. An antioxidant extract rich in bioactive compounds (epicatechins, catechin, gallic acid, quercetin and procynidins) was obtained from the seeds isolated from the pomace of Cannonau red grape cultivar. The extract was incorporated into phospholipid vesicles ad hoc formulated for intestinal delivery, by combining them, for the first time, whit a maltodextrin (Glucidex). Glucidex-transfersomes, glucidex-hyalurosomes and glucidex-hyalutransferomes were prepared, characterized and tested. Gluci…

0301 basic medicineLimosilactobacillus reuteriAntioxidantmedicine.medical_treatmentlcsh:MedicinePolysorbatesAntioxidantschemistry.chemical_compound0302 clinical medicineRecyclingVitisGallic acidFood scienceHyaluronic AcidHydrogen peroxidelcsh:SciencePhospholipidsDrug CarriersMultidisciplinaryfood and beveragesCatechinMaltodextrinIntestinesPolifenolsColonic NeoplasmsSeedsQuercetinPrebiòticsGrapesArticle03 medical and health sciencesNanocapsulesNanoscience and technologyPolysaccharidesCell Line TumormedicineHumansRaïmsWaste ProductsPlant ExtractsPrebioticlcsh:RPomaceHealth carePolyphenolsGreen Chemistry TechnologyHydrogen PeroxideNanostructuresIntestinal Diseases030104 developmental biologyPrebioticschemistryBiofilmsLiposomeslcsh:Q030217 neurology & neurosurgery
researchProduct

COMBINATION OF ARGAN OIL AND PHOSPHOLIPIDS FOR THE DEVELOPMENT OF AN EFFECTIVE LIPOSOME-LIKE FORMULATION ABLE TO IMPROVE SKIN HYDRATION AND ALLANTOIN…

2016

Allantoin is traditionally employed in the treatment of skin ulcers and hypertrophic scars. In the present work, to improve its local deposition in the skin and deeper tissues, allantoin was incorporated in conventional liposomes and in new argan oil enriched liposomes. In both cases, obtained vesicles were unilamellar, as confirmed by cryo-TEM observation, but the addition of argan oil allowed a slight increase of the mean diameter (∼130nm versus ∼85nm). The formulations, especially those containing argan oil, favoured the allantoin accumulation in the skin, in particular in the dermis (∼8.7μg/cm(2)), and its permeation through the skin (∼33μg/cm(2)). The performances of vesicles as skin d…

3003Pig skinfood.ingredientSwineChemistry PharmaceuticalSkin AbsorptionPharmaceutical ScienceArgan oil02 engineering and technologyAdministration Cutaneous030207 dermatology & venereal diseases03 medical and health scienceschemistry.chemical_compoundDrug Delivery Systems0302 clinical medicineAllantoinfoodDermisElastic ModulusSkin rheologymedicineAnimalsPlant OilsAllantoinSofteningPhospholipidsSkinDrug CarriersLiposomeChromatographyintegumentary systemChemistryVesicleLiposomes; Argan oil; Phospholipids; Pig skin; Turbiscan lab; Skin rheology; Skin hydrationPermeation021001 nanoscience & nanotechnologyTurbiscan labmedicine.anatomical_structureSkin hydrationArgan oilLiposomesDermatologic Agents0210 nano-technologyDrug carrierargan oil; liposomes; phospholipids; pig skin; skin hydration; skin rheology; turbiscan lab; 3003
researchProduct

Glycerosomes: Use of hydrogenated soy phosphatidylcholine mixture and its effect on vesicle features and diclofenac skin penetration.

2016

In this work, diclofenac was encapsulated, as sodium salt, in glycerosomes containing 10, 20 or 30% of glycerol in the water phase with the aim to ameliorate its topical efficacy. Taking into account previous findings, glycerosome formulation was modified, in terms of economic suitability, using a cheap and commercially available mixture of hydrogenated soy phosphatidylcholine (P90H). P90H glycerosomes were spherical and multilamellar; photon correlation spectroscopy showed that obtained vesicles were ∼131nm, slightly larger and more polydispersed than those made with dipalmitoylphosphatidylcholine (DPPC) but, surprisingly, they were able to ameliorate the local delivery of diclofenac, whic…

3003GlycerolKeratinocytesDiclofenacSwineSkin Absorptionpig skinPharmaceutical Science02 engineering and technology030226 pharmacology & pharmacyDSC03 medical and health scienceschemistry.chemical_compound0302 clinical medicineDiclofenacDrug Delivery SystemsOrgan Culture TechniquesDynamic light scatteringPhosphatidylcholinemedicineGlycerolAnimalsHumansCells CulturedChromatographyhydrogenated phospholipid vesiclesChemistryVesicle(trans)dermal drug delivery; DSC; hydrogenated phospholipid vesicles; keratinocytes; pig skin; rheology; 3003021001 nanoscience & nanotechnology(trans)dermal drug deliveryDipalmitoylphosphatidylcholineSkin penetrationDrug deliveryPhosphatidylcholinesrheologyHydrogenationSoybeans0210 nano-technologymedicine.drugInternational journal of pharmaceutics
researchProduct

Glycerosomes:investigation of role of 1,2-dimyristoyl-sn-glycero-3-phosphatidycholine (DMPC) on the assembling and skin delivery performances

2017

Glycerosomes were formulated using 1,2-dimyristoyl-sn-glycero-3-phosphatidycholine (DMPC), diclofenac sodium salt and 10, 20 or 30% glycerol in the water phase, while corresponding liposomes were prepared with the same amount of DMPC and diclofenac, without glycerol. The aim of the present work was to evaluate the effect of the used phospholipid on vesicle features and ability to favour diclofenac skin deposition by comparing these results with those found in previous works performed using hydrogenated soy phosphatidylcholine (P90H) and dipalmitoylphosphatidylcholine (DPPC). Liposomes and glycerosomes were multilamellar, liposomes being smaller (72±6nm). Interactions among glycerol, phospho…

liposomes3003skindimyristoylphosphatidylcholinePhospholipidPharmaceutical Science02 engineering and technologyrehological studies010402 general chemistry01 natural sciencesDSCchemistry.chemical_compoundglycerosomesdrug delivery systemsPhosphatidylcholineGlycerolskin deliveryDSC; glycerosomes; rehological studies; SAXS; skin delivery; animals; diclofenac; dimyristoylphosphatidylcholine; liposomes; skin; swine; drug delivery systems; skin absorption; 3003LiposomeChromatographyBilayerVesicletechnology industry and agricultureswineDiclofenac SodiumSAXS021001 nanoscience & nanotechnologyskin absorption0104 chemical sciencesanimalsdiclofenacchemistryDipalmitoylphosphatidylcholinelipids (amino acids peptides and proteins)0210 nano-technology
researchProduct

Phytocomplexes extracted from grape seeds and stalks delivered in phospholipid vesicles tailored for the treatment of skin damages

2019

Abstract In the present work, red grape seed and stalk extracts were incorporated in vesicular systems designed for topical application. The phytocomplexes were obtained by maceration of biomasses in ethanol and subsequent lyophilisation. Seed extract was rich in catechin, epicatechin, epicatechin gallate, while gallic acid, epigallocatechin gallate, quercetin, quercetin 3-glucoside and malvidin-3-glucoside were detected in higher amounts in the stalk extract. Both extracts were incorporated in liposomes, hyalurosomes and transfersomes. In addition, hyalo-transfersomes were developed for the first time in this work, by combining the main modifiers of hyalurosomes and transfersomes (i.e., so…

0106 biological sciencesLiposomeChromatography010405 organic chemistryDPPHVesicleEpigallocatechin gallate01 natural sciences0104 chemical scienceschemistry.chemical_compoundEpicatechin gallatechemistryMaceration (wine)Gallic acidQuercetinAgronomy and Crop Science010606 plant biology & botanyIndustrial Crops and Products
researchProduct