6533b7dafe1ef96bd126e33d
RESEARCH PRODUCT
From waste to health: sustainable exploitation of grape pomace seed extract to manufacture antioxidant, regenerative and prebiotic nanovesicles within circular economy
Anna Maria FaddaMaria ManconiRichard G. MarounAlessandra ScanoMarco ZaruGianluigi BacchettaSara FaisMaria Letizia MancaGiorgia SaraisJosé Esteban PerisElvira Escribano-ferrerGermano OrrùIris UsachEleonora CasulaFrancesca Marongiusubject
0301 basic medicineLimosilactobacillus reuteriAntioxidantmedicine.medical_treatmentlcsh:MedicinePolysorbatesAntioxidantschemistry.chemical_compound0302 clinical medicineRecyclingVitisGallic acidFood scienceHyaluronic AcidHydrogen peroxidelcsh:SciencePhospholipidsDrug CarriersMultidisciplinaryfood and beveragesCatechinMaltodextrinIntestinesPolifenolsColonic NeoplasmsSeedsQuercetinPrebiòticsGrapesArticle03 medical and health sciencesNanocapsulesNanoscience and technologyPolysaccharidesCell Line TumormedicineHumansRaïmsWaste ProductsPlant ExtractsPrebioticlcsh:RPomaceHealth carePolyphenolsGreen Chemistry TechnologyHydrogen PeroxideNanostructuresIntestinal Diseases030104 developmental biologyPrebioticschemistryBiofilmsLiposomeslcsh:Q030217 neurology & neurosurgerydescription
AbstractPomace seed extract loaded vesicles were prepared as promising technological and green solution to exploit agri-food wastes and by-products, and develop high value-added products for human health. An antioxidant extract rich in bioactive compounds (epicatechins, catechin, gallic acid, quercetin and procynidins) was obtained from the seeds isolated from the pomace of Cannonau red grape cultivar. The extract was incorporated into phospholipid vesicles ad hoc formulated for intestinal delivery, by combining them, for the first time, whit a maltodextrin (Glucidex). Glucidex-transfersomes, glucidex-hyalurosomes and glucidex-hyalutransferomes were prepared, characterized and tested. Glucidex-liposomes were used as reference. All vesicles were small in size (~ 150 nm), homogeneously dispersed and negatively charged. Glucidex-transfersomes and especially glucidex-hyalutransfersomes disclosed an unexpected resistance to acidic pH and high ionic strength, as they maintained their physico-chemical properties (size and size distribution) after dilution at pH 1.2 simulating the harsh gastric conditions. Vesicles were highly biocompatible and able to counteract the oxidative damages induced in Caco-2 cells by using hydrogen peroxide. Moreover, they promoted the formation of Lactobacillus reuteri biofilm acting as prebiotic formulation. Overall results suggest the potential of glucidex-hyalutransfersomes as food supplements for the treatment of intestinal disorders.
year | journal | country | edition | language |
---|---|---|---|---|
2020-08-01 |