Ranking of tree-ring based temperature reconstructions of the past millennium
German Science Foundation [161/9-1]; National Natural Science Foundation of China [41325008]; [RNF 15-14-30011]
New tree-ring evidence for the Late Glacial period from the northern pre-Alps in eastern Switzerland
Abstract The rate and magnitude of temperature variability at the transition from the Last Glacial Maximum into the early Holocene represents a natural analog to current and predicted climate change. A limited number of high-resolution proxy archives, however, challenges our understanding of environmental conditions during this period. Here, we present combined dendrochronological and radiocarbon evidence from 253 newly discovered subfossil pine stumps from Zurich, Switzerland. The individual trees reveal ages of 41–506 years and were growing between the Allerod and Preboreal (∼13′900–11′300 cal BP). Together with previously collected pines from this region, this world's best preserved Late…
No Age Trends in Oak Stable Isotopes
Illuminating Intcal During the Younger Dryas
As the worldwide standard for radiocarbon (14C) dating over the past ca. 50,000 years, the International Calibration Curve (IntCal) is continuously improving towards higher resolution and replication. Tree-ring-based 14C measurements provide absolute dating throughout most of the Holocene, although high-precision data are limited for the Younger Dryas interval and farther back in time. Here, we describe the dendrochronological characteristics of 1448 new 14C dates, between ~11,950 and 13,160 cal BP, from 13 pines that were growing in Switzerland. Significantly enhancing the ongoing IntCal update (IntCal20), this Late Glacial (LG) compilation contains more annually precise 14C dates than any…
Spatio‐temporal patterns of tree growth as related to carbon isotope fractionation in European forests under changing climate
Aim The aim was to decipher Europe‐wide spatio‐temporal patterns of forest growth dynamics and their associations with carbon isotope fractionation processes inferred from tree rings as modulated by climate warming. Location Europe and North Africa (30‒70° N, 10° W‒35° E). Time period 1901‒2003. Major taxa studied Temperate and Euro‐Siberian trees. Methods We characterize changes in the relationship between tree growth and carbon isotope fractionation over the 20th century using a European network consisting of 20 site chronologies. Using indexed tree‐ring widths (TRWi), we assess shifts in the temporal coherence of radial growth across sites (synchrony) for five forest ecosystems (Atlantic…
Climate signals in δ13C of wood lignin methoxyl groups from high-elevation larch trees
Abstract In this study, a barely used method to measure δ13C values from lignin methoxyl groups (δ13Cmethoxyl) of tree‐rings is applied to high alpine larch trees to test their potential as a climate proxy. Thirty-seven larch trees (Larix decidua Mill.) were sampled at a tree line site near Simplon Village in the Valais/Switzerland. Samples were used to measure tree-ring width, and from five individuals, δ13Cmethoxyl was determined at annual resolution from 1971 to 2009, and at pentadal resolution from 1747 to 2009. The physiological tree responses to increasing atmospheric CO2 concentration since 1850 and the corresponding decrease in δ13C (Suess effect) were corrected using a range of pub…
Water-use efficiency and transpiration across European forests during the Anthropocene
Considering the combined effects of CO2 fertilization and climate change drivers on plant physiology leads to a modest increase in simulated European forest transpiration in spite of the effects of CO2-induced stomatal closure. The Earth’s carbon and hydrologic cycles are intimately coupled by gas exchange through plant stomata1,2,3. However, uncertainties in the magnitude4,5,6 and consequences7,8 of the physiological responses9,10 of plants to elevated CO2 in natural environments hinders modelling of terrestrial water cycling and carbon storage11. Here we use annually resolved long-term δ13C tree-ring measurements across a European forest network to reconstruct the physiologically driven r…
Uniform climate sensitivity in tree-ring stable isotopes across species and sites in a mid-latitude temperate forest.
Tree-ring stable isotopes, providing insight into drought-induced eco-physiological mechanisms, are frequently used to reconstruct past changes in growing season temperature and precipitation. Their climatic response is, however, still not fully understood, particularly for data originating from non-extreme, mid-latitude environments with differing ecological conditions. Here, we assess the response of δ(13)C, δ(18)O and tree-ring width (TRW) from a temperate mountain forest in the Austrian pre-Alps to climate and specific drought events. Variations in stem growth and isotopic composition of Norway spruce, common beech and European larch from dry, medium and moist sites are compared with re…
Low-frequency noise inδ13C andδ18O tree ring data: A case study ofPinus uncinatain the Spanish Pyrenees
[1] Isotopic discrimination measurements in tree rings are becoming increasingly important estimators of past environmental change. Potential biases inherent to these parameters, including age trend and level offset are, however, not well understood. We here perform measurements on a new millennium-long data set of decadally resolved δ18O and δ13C discrimination from 25 high-elevation pine trees in the Spanish Pyrenees to investigate whether such low-frequency biases exist and how they alter the long-term behavior of derived time series. Alignment of the tree ring data by biological age reveals age trends over the first one to four centuries after germination. On average, isotope values cha…
Modified climate with long term memory in tree ring proxies
ABSTRACT : A contribution to the PAGES Asia2k Working Group. ABSTRACT: Long term memory (LTM) scaling behavior in worldwide tree ring proxies and subsequent climate reconstructions is analyzed for and compared with the memory structure inherent to instrumental temperature and precipitation data. Detrended fluctuation analysis is employed to detect LTM and its scaling exponent a is used to evaluate LTM. The results show that temperature and precipitation reconstructions based on ring width measurements (mean \alpha =0.8) contain more memory than records based on maximum latewood density (mean \alpha =0.7). Both exceed the memory inherent to regional instrumental data (\alpha =0.6 for tempera…
Stable carbon isotope ratios of tree-ring cellulose from the site network of the EU-Project ‘ISONET’
The ISONET project has been striving to improve greatly our understanding of European climate systems providing independent quantitative data for model verification and policy making. A network of 24 sites provides dendrochronological coverage from Iberia to Fennoscandia, Caledonia and the Tyrol. The stable isotope (C, H, O) ratios of these annually resolved time series shall be analysed within this project, to reconstruct past climate regimes (temperature, relative humidity and precipitation characteristics) for the last 400 years. Climate variability shall be addressed on three timescales; decade-century (source water/air mass dominance); inter-annual (quantifying baseline variability, ex…
Stable oxygen isotope ratios of tree-ring cellulose from the site network of the EU-Project ‘ISONET’
24 European annually resolved stable isotope chronologies have been constructed from tree ring cellulose for the last 400 years (1600CE – 2003CE) for carbon and oxygen and for the last 100 years for hydrogen. Data was produced within the ISONET project (400 Years of Annual Reconstructions of European Climate Variability Using a Highly Resolved Isotopic Network,) to initiate an extensive spatiotemporal tree-ring stable isotope network across Europe funded as part of the fifth EC Framework Programme “Energy, Environment and Sustainable Development”. This data set comprises the ISONET δ18O records.