0000000000222311

AUTHOR

Jérôme Kasparian

showing 8 related works from this author

Higher-order Kerr effect in ultrashort laser pulse propagation and laser filamentation

2011

We discuss the contribution of the higher-order Kerr effect (HOKE) to the propagation of ultrashort laser pulses in several contexts. We show that their consideration is necessary to adequately reproduce experimental data about harmonics generation, propagation in hollow-core fibers, and laser filamentation. In the latter case, our results show that the HOKE play a key role for short pluses and/or long wavelengths, while the plasma contributes more for long pulses and/or short wavelengths.

PhysicsKerr effectbusiness.industryPlasmaLaserPulse propagationlaw.inventionWavelengthUltrashort laserOpticsFilamentationlawHarmonicsbusiness2011 XXXth URSI General Assembly and Scientific Symposium
researchProduct

Optical kerr effect in the strong field regime

2013

The optical Kerr response of hydrogen atom submitted to a strong and short near infrared laser pulse excitation is studied by solving the full 3D time-dependent Schro¨dinger equation. The nonlinear polarization evaluated at the driving field frequency is compared to the canonical expression derived from perturbation theory. A discrepancy between the two models is observed at large intensity affecting the nonlinear propagation of short and intense laser pulses.

PhysicsKerr effectMagneto-optic Kerr effectMode-lockingQuantum mechanicsCross-phase modulationFilament propagationOptical polarizationSoliton (optics)Physics::Atomic PhysicsAtomic physicsQ-switching
researchProduct

Mechanism of hollow-core-fiber infrared-supercontinuum compression with bulk material

2010

We numerically investigate the pulse compression mechanism in the infrared spectral range based on the successive action of nonlinear pulse propagation in a hollow-core fiber followed by linear propagation through bulk material. We found an excellent agreement of simulated pulse properties with experimental results at 1.8 {mu}m in the two-optical-cycle regime close to the Fourier limit. In particular, the spectral phase asymmetry attributable to self-steepening combined with self-phase modulation is a necessary prerequisite for subsequent compensation by the phase introduced by glass material in the anomalous dispersion regime. The excellent agreement of the model enabled simulating pressur…

Physicsbusiness.industryInfraredPhase (waves)ddc:500.201 natural sciencesAtomic and Molecular Physics and OpticsSpectral lineSupercontinuumPulse (physics)010309 opticsWavelengthOpticsPulse compression0103 physical sciences010306 general physicsbusinessSelf-phase modulationPhysical Review A
researchProduct

Transition from plasma-driven to Kerr-driven laser filamentation.

2011

While filaments are generally interpreted as a dynamic balance between Kerr focusing and plasma defocusing, the role of the higher-order Kerr effect (HOKE) is actively debated as a potentially dominant defocusing contribution to filament stabilization. In a pump-probe experiment supported by numerical simulations, we demonstrate the transition between two distinct filamentation regimes at 800 nm. For long pulses (1.2 ps), the plasma substantially contributes to filamentation, while this contribution vanishes for short pulses (70 fs). These results confirm the occurrence, in adequate conditions, of filamentation driven by the HOKE rather than by plasma.

PhysicsKerr effectgenetic structuresbusiness.industryGeneral Physics and AstronomyPhysics::OpticsSelf-focusingddc:500.2Plasmamacromolecular substancesLaser01 natural scienceslaw.invention010309 opticsProtein filamentQuantitative Biology::Subcellular ProcessesOpticsFilamentationlaw0103 physical sciencesAtomic physics010306 general physicsbusinessSelf-phase modulationPhysical review letters
researchProduct

Spectral dependence of purely-Kerr driven filamentation in air and argon

2010

5 pags, 4 figs.-- PACS number(s): 42.65.Jx, 42.65.Tg, 78.20.Ci. -- Publisher error corrected 27 September 2010, Erratum Phys. Rev. A 82, 039905 (2010): https://doi.org/10.1103/PhysRevA.82.033826

Kerr effect[ PHYS.PHYS.PHYS-ATOM-PH ] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]chemistry.chemical_elementFOS: Physical sciencesPhysics::Opticsddc:500.201 natural sciencesLaser filamentationSpectral line010309 opticsFilamentationPhysics::Plasma PhysicsIonizationSelf-focusing0103 physical sciencesSelf focusing and defocusingOptical solitonsOptical constantsUltrafast nonlinear optics010306 general physicsSelf-phase modulationOptical Kerr effectPhysicsArgonMolecular alignment[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Femtosecond phenomena42.65.Jx 42.65.Tg 78.20.CiSelf-focusingSelf-phase modulationBeam trappingAtomic and Molecular Physics and OpticsWavelengthchemistryPlasmasAtomic physicsPhysics - OpticsOptics (physics.optics)
researchProduct

Higher-order Kerr effects improve quantitative modelling of harmonics generation and laser filamentation

2013

The consideration of the higher-order Kerr effect (HOKE) drastically improves the quantitative agreement between measured and simulated harmonic yield as well as intensity and electron density in laser filaments generated by pulses below a few hundreds of fs. In longer pulses, the plasma defocusing plays a much more important role.

PhysicsElectron densityKerr effectbusiness.industryPhysicsQC1-999Physics::OpticsPlasmaLaserIntensity (physics)law.inventionOpticsFilamentationlawHarmonicsHarmonicbusinessEPJ Web of Conferences
researchProduct

Higher-order Kerr terms allow ionization-free filamentation in gases.

2010

We show that higher-order nonlinear indices ($n_4$, $n_6$, $n_8$, $n_{10}$) provide the main defocusing contribution to self-channeling of ultrashort laser pulses in air and Argon at 800 nm, in contrast with the previously accepted mechanism of filamentation where plasma was considered as the dominant defocusing process. Their consideration allows to reproduce experimentally observed intensities and plasma densities in self-guided filaments.

Kerr effectGeneral Physics and Astronomychemistry.chemical_elementFOS: Physical sciencesPhysics::Opticsddc:500.201 natural sciences010309 opticsOpticsFilamentationPhysics::Plasma PhysicsIonization0103 physical sciences010306 general physicsSelf-phase modulationPhysicsArgonbusiness.industryOrder (ring theory)Self-focusingPlasmachemistryAtomic physicsbusinessOptics (physics.optics)Physics - OpticsPhysical review letters
researchProduct

High-field quantum calculation reveals time-dependent negative Kerr contribution

2013

The exact quantum time-dependent optical response of hydrogen under strong field near infrared excitation is investigated and compared to the perturbative model widely used for describing the effective atomic polarization induced by intense laser fields. By solving the full 3D time-dependent Schr\"{o}dinger equation, we exhibit a supplementary, quasi-instantaneous defocusing contribution missing in the weak-field model of polarization. We show that this effect is far from being negligible in particular when closures of ionization channels occur and stems from the interaction of electrons with their parent ions. It provides an interpretation to higher-order Kerr effect recently observed in v…

PhysicsQuantum PhysicsKerr effectAtomic Physics (physics.atom-ph)FOS: Physical sciencesGeneral Physics and AstronomyElectronddc:500.2Polarization (waves)01 natural sciencesIonSchrödinger equationPhysics - Atomic Physics010309 opticssymbols.namesakeIonization0103 physical sciencessymbolsAtomic physicsQuantum Physics (quant-ph)010306 general physicsQuantumExcitationOptics (physics.optics)Physics - Optics
researchProduct