0000000000223562

AUTHOR

L. Ibgui

Accretion Shocks in Young Stars: the Role of Local Absorption on the X-ray Emission

We investigate the X-ray emission from accretion shocks in classical T Tauri stars, due to the infalling material impacting the stellar surface. Several aspects in both observations and models of the accretion process are still unclear: the observed X-ray luminosity of the post-shock plasma is below the predicted value, the density vs temperature structure of the shocked plasma, with increasing densities at higher temperature, is opposite of what expected from simple accretion shock models. To address these issues we performed numerical magnetohydrodynamic simulations describing the impact of an accretion stream onto the stellar surface and considered the local absorption due to the surroun…

research product

Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars

(abridged) AIMS. We investigate the dynamics and stability of post-shock plasma streaming along nonuniform stellar magnetic fields at the impact region of accretion columns. We study how the magnetic field configuration and strength determine the structure, geometry, and location of the shock-heated plasma. METHODS. We model the impact of an accretion stream onto the chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our model takes into account the gravity, the radiative cooling, and the magnetic-field-oriented thermal conduction. RESULTS. The structure, stability, and location of the shocked plasma strongly depend on the configuration and strength of the magnetic f…

research product

Role of local absorption on the X-ray emission from MHD accretion shocks in classical T Tauri stars

Accretion processes onto classical T Tauri stars (CTTSs) are believed to generate shocks at the stellar surface due to the impact of supersonic downflowing plasma. Although current models of accretion streams provide a plausible global picture of this process, several aspects are still unclear. For example, the observed X-ray luminosity in accretion shocks is, in general, well below the predicted value. A possible explanation discussed in the literature is in terms of significant absorption of the emission due to the thick surrounding medium. Here we consider a 2D MHD model describing an accretion stream propagating through the atmosphere of a CTTS and impacting onto its chromosphere. The m…

research product

X-rays from accretion shocks in classical T Tauri stars: 2D MHD modeling and the role of local absorption

AbstractIn classical T Tauri stars (CTTS) strong shocks are formed where the accretion funnel impacts with the denser stellar chromosphere. Although current models of accretion provide a plausible global picture of this process, some fundamental aspects are still unclear: the observed X-ray luminosity in accretion shocks is order of magnitudes lower than predicted; the observed density and temperature structures of the hot post-shock region are puzzling and still unexplained by models.To address these issues we performed 2D MHD simulations describing an accretion stream impacting onto the chromosphere of a CTTS, exploring different configurations and strengths of the magnetic field. From th…

research product

Effects of radiation in accretion regions of classical T Tauri stars

Context. Models and observations indicate that the impact of matter accreting onto the surface of young stars produces regions at the base of accretion columns where optically thin and thick plasma components coexist. Thus, an accurate description of these impacts is necessary to account for the effects of absorption and emission of radiation. Aims. We study the effects of radiation emerging from shock-heated plasma in impact regions on the structure of the pre-shock down-falling material. We investigate whether a significant absorption of radiation occurs and if it leads to a pre-shock heating of the accreting gas. Methods. We developed a radiation hydrodynamics model describing an accreti…

research product

Mass Accretion Impacts in Classical T Tauri Stars: A Multi-disciplinary Approach

Accretion of matter is a process that plays a central role in the physics of young stellar objects. The analysis of the structure by which matter settles on the star can unveil key information about the process of star formation by providing details on mass accretion rates, stellar magnetic field configurations, possible effects of accretion on the stellar coronal activity, etc. Here we review some of the achievements obtained by our group by exploiting a multi-disciplinary approach based on the analysis of multi-dimensional magnetohydrodynamic simulations, multi-wavelength observations, and laboratory experiments of accretion impacts occurring onto the surface of classical T Tauri stars (C…

research product

New view of the corona of classical T Tauri stars: Effects of flaring activity in circumstellar disks

Classical T Tauri stars (CTTSs) are young low-mass stellar objects accreting mass from their circumstellar disks. They are characterized by high levels of coronal activity as revealed by X-ray observations. This activity may affect the disk stability and the circumstellar environment. Here we investigate if an intense coronal activity due to flares occurring close to the accretion disk may perturb the inner disk stability, disrupt the inner part of the disk and, possibly, trigger accretion phenomena with rates comparable with those observed. We model a magnetized protostar surrounded by an accretion disk through 3D magnetohydrodinamic simulations. We explore cases characterized by a dipole …

research product

Magnetohydrodynamic Modeling of the Accretion Shocks in Classical T Tauri Stars: The Role of Local Absorption in the X-Ray Emission

We investigate the properties of X-ray emission from accretion shocks in classical T Tauri stars (CTTSs), generated where the infalling material impacts the stellar surface. Both observations and models of the accretion process reveal several aspects that are still unclear: the observed X-ray luminosity in accretion shocks is below the predicted value, and the density versus temperature structure of the shocked plasma, with increasing densities at higher temperature, deduced from the observations, is at odds with that proposed in the current picture of accretion shocks. To address these open issues we investigate whether a correct treatment of the local absorption by the surrounding medium …

research product

3D YSO accretion shock simulations: a study of the magnetic, chromospheric and stochastic flow effects

AbstractThe structure and dynamics of young stellar object (YSO) accretion shocks depend strongly on the local magnetic field strength and configuration, as well as on the radiative transfer effects responsible for the energy losses. We present the first 3D YSO shock simulations of the interior of the stream, assuming a uniform background magnetic field, a clumpy infalling gas, and an acoustic energy flux flowing at the base of the chromosphere. We study the dynamical evolution and the post-shock structure as a function of the plasma-beta (thermal pressure over magnetic pressure). We find that a strong magnetic field (~hundreds of Gauss) leads to the formation of fibrils in the shocked gas …

research product

Effects of radiation in accretion regions of classical T Tauri stars

Models and observations indicate that the impact of matter accreting onto the surface of young stars produces regions at the base of accretion columns, in which optically thin and thick plasma components coexist. Thus an accurate description of these impacts requires to account for the effects of absorption and emission of radiation. We study the effects of radiation emerging from shock-heated plasma in impact regions on the structure of the pre-shock downfalling material. We investigate if a significant absorption of radiation occurs and if it leads to a pre-shock heating of the accreting gas. We developed a radiation hydrodynamics model describing an accretion column impacting onto the su…

research product

Flaring activity on the disk of Classical T Tauri Stars: effects on disk stability

Classical T Tauri Stars (CTTSs) are young stellar objects surrounded by a circumstellar disk with which they exchange mass and angular momentum through accretion. Despite this process is a crucial aspect of star formation, some issues are still not clear; in particular how the material loses angular momentum and falls into the star. CTTSs are also characterized by strong X-ray emission. Part of this X-ray emission comes from the heated plasma in the external regions of the stellar corona with temperature between 1 and 100 MK. The plasma heating is presumably due to the strong magnetic field (Feigelson and Montmerle, 1999) in the form of high energetic flares in proximity of the stellar surf…

research product

3D numerical modeling of YSO accretion shocks

International audience; The dynamics of YSO accretion shocks is determined by radiative processes as well as the strength and structure of the magnetic field. A quasi-periodic emission signature is theoretically expected to be observed, but observations do not confirm any such pattern. In this work, we assume a uniform background field, in the regime of optically thin energy losses, and we study the multi-dimensional shock evolution in the presence of perturbations, i.e. clumps in the stream and an acoustic energy flux flowing at the base of the chromosphere. We perform 3D MHD simulations using the PLUTO code, modeling locally the impact of the infalling gas onto the chromosphere. We find t…

research product

Non-LTE radiation hydrodynamics in PLUTO

Modeling the dynamics of most astrophysical structures requires an adequate description of the radiation-matter interaction. Several numerical (magneto)hydrodynamics codes were upgraded with a radiation module to fulfill this request. However, those among them that use either the flux-limited diffusion (FLD) or the M1 radiation moment approaches are restricted to the local thermodynamic equilibrium (LTE). This assumption may be not valid in some astrophysical cases. We present an upgraded version of the LTE radiation-hydrodynamics module implemented in the PLUTO code, originally developed by Kolb et al. (2013), which we have extended to handle non-LTE regimes. Starting from the general freq…

research product

YSO accretion shocks: magnetic, chromospheric or stochastic flow effects can suppress fluctuations of X-ray emission

Context. Theoretical arguments and numerical simulations of radiative shocks produced by the impact of the accreting gas onto young stars predict quasi-periodic oscillations in the emitted radiation. However, observational data do not show evidence of such periodicity. Aims. We investigate whether physically plausible perturbations in the accretion column or in the chromosphere could disrupt the shock structure influencing the observability of the oscillatory behavior. Methods. We performed local 2D magneto-hydrodynamical simulations of an accretion shock impacting a chromosphere, taking optically thin radiation losses and thermal conduction into account. We investigated the effects of seve…

research product

3D Gray Radiative Properties of Accretion Shocks in Young Stellar Objects

International audience; We address the problem of the contribution of radiation to the structure and dynamics of accretion shocks on Young Stellar Objects. Solving the 3D RTE (radiative transfer equation) under our "gray LTE approach", i.e., using appropriate mean opacities computed in local thermodynamic equilibrium, we post-process the 3D MHD (magne-tohydrodynamic) structure of an accretion stream impacting the stellar chromosphere. We find a radiation flux of ten orders of magnitude larger than the accreting energy rate, which is due to a large overestimation of the radiative cooling. A gray LTE radiative transfer approximation is therefore not consistent with the given MHD structure of …

research product

Radiation Magnetohydrodynamic Models and Spectral Signatures of Plasma Flows Accreting onto Classical T Tauri Stars

CTTSs are young stars accreting mass from their circumstellar disks. The material falls into the star at free fall velocity and hits the stellar surface producing shocks, that heat the plasma at few million degrees. In the last twenty years the X-ray and UV observations of these systems have raised several questions. In particular, the observed X-ray luminosity is systematically below the value predicted by theoretical models, and the UV lines show complex profiles which cannot be easily interpreted with current accretion models based only on magnetohydrodynamical effects. To tackle these problems we modeled the structure and the dynamics of the plasma in the impact region using 3D magnetoh…

research product