0000000000223662
AUTHOR
Kuruge Darshana Abeyrathna
Adaptive sparse representation of continuous input for tsetlin machines based on stochastic searching on the line
This paper introduces a novel approach to representing continuous inputs in Tsetlin Machines (TMs). Instead of using one Tsetlin Automaton (TA) for every unique threshold found when Booleanizing continuous input, we employ two Stochastic Searching on the Line (SSL) automata to learn discriminative lower and upper bounds. The two resulting Boolean features are adapted to the rest of the clause by equipping each clause with its own team of SSLs, which update the bounds during the learning process. Two standard TAs finally decide whether to include the resulting features as part of the clause. In this way, only four automata altogether represent one continuous feature (instead of potentially h…
Training Artificial Neural Networks With Improved Particle Swarm Optimization
Particle Swarm Optimization (PSO) is popular for solving complex optimization problems. However, it easily traps in local minima. Authors modify the traditional PSO algorithm by adding an extra step called PSO-Shock. The PSO-Shock algorithm initiates similar to the PSO algorithm. Once it traps in a local minimum, it is detected by counting stall generations. When stall generation accumulates to a prespecified value, particles are perturbed. This helps particles to find better solutions than the current local minimum they found. The behavior of PSO-Shock algorithm is studied using a known: Schwefel's function. With promising performance on the Schwefel's function, PSO-Shock algorithm is util…
Hybrid Particle Swarm Optimization With Genetic Algorithm to Train Artificial Neural Networks for Short-Term Load Forecasting
This research proposes a new training algorithm for artificial neural networks (ANNs) to improve the short-term load forecasting (STLF) performance. The proposed algorithm overcomes the so-called training issue in ANNs, where it traps in local minima, by applying genetic algorithm operations in particle swarm optimization when it converges to local minima. The training ability of the hybridized training algorithm is evaluated using load data gathered by Electricity Generating Authority of Thailand. The ANN is trained using the new training algorithm with one-year data to forecast equal 48 periods of each day in 2013. During the testing phase, a mean absolute percentage error (MAPE) is used …
A Scheme for Continuous Input to the Tsetlin Machine with Applications to Forecasting Disease Outbreaks
In this paper, we apply a new promising tool for pattern classification, namely, the Tsetlin Machine (TM), to the field of disease forecasting. The TM is interpretable because it is based on manipulating expressions in propositional logic, leveraging a large team of Tsetlin Automata (TA). Apart from being interpretable, this approach is attractive due to its low computational cost and its capacity to handle noise. To attack the problem of forecasting, we introduce a preprocessing method that extends the TM so that it can handle continuous input. Briefly stated, we convert continuous input into a binary representation based on thresholding. The resulting extended TM is evaluated and analyzed…
On the Convergence of Tsetlin Machines for the XOR Operator.
The Tsetlin Machine (TM) is a novel machine learning algorithm with several distinct properties, including transparent inference and learning using hardware-near building blocks. Although numerous papers explore the TM empirically, many of its properties have not yet been analyzed mathematically. In this article, we analyze the convergence of the TM when input is non-linearly related to output by the XOR-operator. Our analysis reveals that the TM, with just two conjunctive clauses, can converge almost surely to reproducing XOR, learning from training data over an infinite time horizon. Furthermore, the analysis shows how the hyper-parameter T guides clause construction so that the clauses c…
A multi-step finite-state automaton for arbitrarily deterministic Tsetlin Machine learning
Integer Weighted Regression Tsetlin Machines
The Regression Tsetlin Machine (RTM) addresses the lack of interpretability impeding state-of-the-art nonlinear regression models. It does this by using conjunctive clauses in propositional logic to capture the underlying non-linear frequent patterns in the data. These, in turn, are combined into a continuous output through summation, akin to a linear regression function, however, with non-linear components and binary weights. However, the resolution of the RTM output is proportional to the number of clauses employed. This means that computation cost increases with resolution. To address this problem, we here introduce integer weighted RTM clauses. Our integer weighted clause is a compact r…
Massively Parallel and Asynchronous Tsetlin Machine Architecture Supporting Almost Constant-Time Scaling
Using logical clauses to represent patterns, Tsetlin Machine (TM) have recently obtained competitive performance in terms of accuracy, memory footprint, energy, and learning speed on several benchmarks. Each TM clause votes for or against a particular class, with classification resolved using a majority vote. While the evaluation of clauses is fast, being based on binary operators, the voting makes it necessary to synchronize the clause evaluation, impeding parallelization. In this paper, we propose a novel scheme for desynchronizing the evaluation of clauses, eliminating the voting bottleneck. In brief, every clause runs in its own thread for massive native parallelism. For each training e…