6533b7d4fe1ef96bd1261e78

RESEARCH PRODUCT

Adaptive sparse representation of continuous input for tsetlin machines based on stochastic searching on the line

Ole-christoffer GranmoMorten GoodwinKuruge Darshana Abeyrathna

subject

Stochastic Searching on the Line automatonBoosting (machine learning)decision support systemTK7800-8360Computer Networks and CommunicationsComputer scienceDiscriminative modelFeature (machine learning)Electrical and Electronic EngineeringArtificial neural networkrule-based learninginterpretable machine learninginterpretable AISparse approximationAutomatonRandom forestSupport vector machineVDP::Teknologi: 500Tsetlin MachineXAIHardware and ArchitectureControl and Systems EngineeringSignal ProcessingElectronicsTsetlin automataAlgorithm

description

This paper introduces a novel approach to representing continuous inputs in Tsetlin Machines (TMs). Instead of using one Tsetlin Automaton (TA) for every unique threshold found when Booleanizing continuous input, we employ two Stochastic Searching on the Line (SSL) automata to learn discriminative lower and upper bounds. The two resulting Boolean features are adapted to the rest of the clause by equipping each clause with its own team of SSLs, which update the bounds during the learning process. Two standard TAs finally decide whether to include the resulting features as part of the clause. In this way, only four automata altogether represent one continuous feature (instead of potentially hundreds of them). We evaluate the performance of the new scheme empirically using five datasets, along with a study of interpretability. On average, TMs with SSL feature representation use 4.3 times fewer literals than the TM with static threshold-based features. Furthermore, in terms of average memory usage and F1-Score, our approach outperforms simple Multi-Layered Artificial Neural Networks, Decision Trees, Support Vector Machines, K-Nearest Neighbor, Random Forest, Gradient Boosted Trees (XGBoost), and Explainable Boosting Machines (EBMs), as well as the standard and real-value weighted TMs. Our approach further outperforms Neural Additive Models on Fraud Detection and StructureBoost on CA-58 in terms of the Area Under Curve while performing competitively on COMPAS.

10.3390/electronics10172107https://hdl.handle.net/11250/2787442