0000000000223853

AUTHOR

Sabine Ruehle

showing 11 related works from this author

Neuron-type specific cannabinoid-mediated G protein signalling in mouse hippocampus

2013

Type 1 cannabinoid receptor (CB1) is expressed in different neuronal populations in the mammalian brain. In particular, CB1 on GABAergic or glutamatergic neurons exerts different functions and display different pharmacological properties in vivo. This suggests the existence of neuron-type specific signalling pathways activated by different subpopulations of CB1. In this study, we analysed CB1 expression, binding and signalling in the hippocampus of conditional mutant mice, bearing CB1 deletion in GABAergic (GABA-CB1-KO mice) or cortical glutamatergic neurons (Glu-CB1-KO mice). Compared to their wild-type littermates, Glu-CB1-KO displayed a small decrease of CB1 mRNA amount, immunoreactivity…

Cannabinoid receptorG proteinmedicine.medical_treatmentHippocampusBiologyHippocampal formationHippocampusBiochemistryMice03 medical and health sciencesCellular and Molecular NeuroscienceGlutamatergic0302 clinical medicineGTP-binding protein regulatorsReceptor Cannabinoid CB1GTP-Binding ProteinsmedicineAnimalsGABAergic Neurons030304 developmental biologyMice Knockout0303 health sciencesCannabinoidsmusculoskeletal neural and ocular physiologyfood and beveragesMice Inbred C57BLnervous systemGABAergiclipids (amino acids peptides and proteins)CannabinoidNeurosciencepsychological phenomena and processes030217 neurology & neurosurgeryProtein BindingSignal TransductionJournal of Neurochemistry
researchProduct

Peripheral and central CB1 cannabinoid receptors control stress-induced impairment of memory consolidation

2016

Stressful events can generate emotional memories linked to the traumatic incident, but they also can impair the formation of nonemotional memories. Although the impact of stress on emotional memories is well studied, much less is known about the influence of the emotional state on the formation of nonemotional memories. We used the novel object-recognition task as a model of nonemotional memory in mice to investigate the underlying mechanism of the deleterious effect of stress on memory consolidation. Systemic, hippocampal, and peripheral blockade of cannabinoid type-1 (CB1) receptors abolished the stress-induced memory impairment. Genetic deletion and rescue of CB1 receptors in specific ce…

MaleEstrès0301 basic medicineIndolesCannabinoid receptormedicine.medical_treatmentPopulationDopamine beta-HydroxylaseHippocampal formation03 medical and health sciences0302 clinical medicinePiperidinesReceptor Cannabinoid CB1Cannabinoides -- ReceptorsmedicineAnimalsMemory impairmentReceptoreducationMemory ConsolidationMice KnockoutNeuronsElectroshockMemory Disorderseducation.field_of_studyMultidisciplinaryBiological SciencesEndocannabinoid system3. Good health030104 developmental biologyHindlimb SuspensionPyrazolesMemory consolidationCannabinoidRimonabantPsychologyNeuroscienceAnisomycinStress Psychological030217 neurology & neurosurgeryMemòriaProceedings of the National Academy of Sciences
researchProduct

The endocannabinoid system controls food intake via olfactory processes

2014

Comment in Sensory systems: the hungry sense. [Nat Rev Neurosci. 2014] Inhaling: endocannabinoids and food intake. [Nat Neurosci. 2014]; International audience; Hunger arouses sensory perception, eventually leading to an increase in food intake, but the underlying mechanisms remain poorly understood. We found that cannabinoid type-1 (CB1) receptors promote food intake in fasted mice by increasing odor detection. CB1 receptors were abundantly expressed on axon terminals of centrifugal cortical glutamatergic neurons that project to inhibitory granule cells of the main olfactory bulb (MOB). Local pharmacological and genetic manipulations revealed that endocannabinoids and exogenous cannabinoid…

MaleOlfactory systemMESH: Olfactory PerceptionCannabinoid receptorMESH: Feedback Physiological[SDV]Life Sciences [q-bio]medicine.medical_treatmentMESH: Cannabinoid Receptor AgonistsMESH: EndocannabinoidsMESH: Receptor Cannabinoid CB1Synaptic TransmissionMESH: Mice KnockoutMESH: EatingEatingMiceOlfactory bulbReceptor Cannabinoid CB1MESH: AnimalsFeedback PhysiologicalMice Knockoutmusculoskeletal neural and ocular physiologyGeneral Neurosciencedigestive oral and skin physiologyOlfactory PathwaysEndocannabinoid systemMESH: Feeding Behaviorlipids (amino acids peptides and proteins)psychological phenomena and processesMESH: Olfactory BulbBiologyInhibitory postsynaptic potentialGlutamatergicMESH: Mice Inbred C57BLMESH: Synaptic TransmissionmedicineAnimalsMESH: MiceCannabinoid Receptor AgonistsFeeding BehaviorOlfactory PerceptionMESH: MaleOlfactory bulbMice Inbred C57BLnervous systemOdorFeeding behaviourCannabinoid[SDV.AEN]Life Sciences [q-bio]/Food and NutritionNeuroscienceMESH: Olfactory PathwaysEndocannabinoidsNature Neuroscience
researchProduct

Cannabinoid CB1 receptors in distinct circuits of the extended amygdala determine fear responsiveness to unpredictable threat.

2016

The brain circuits underlying behavioral fear have been extensively studied over the last decades. Although the vast majority of experimental studies assess fear as a transient state of apprehension in response to a discrete threat, such phasic states of fear can shift to a sustained anxious apprehension, particularly in face of diffuse cues with unpredictable environmental contingencies. Unpredictability, in turn, is considered an important variable contributing to anxiety disorders. The networks of the extended amygdala have been suggested keys to the control of phasic and sustained states of fear, although the underlying synaptic pathways and mechanisms remain poorly understood. Here, we…

0301 basic medicineMaleReflex StartleAnxietyAmygdalaDevelopmental psychology03 medical and health sciencesCellular and Molecular NeuroscienceMice0302 clinical medicineExtended amygdalaReceptor Cannabinoid CB1medicineAnimalsMolecular BiologyFear processing in the brainCannabinoidsFearmedicine.diseaseAmygdalaEndocannabinoid systemAnxiety DisordersPsychiatry and Mental healthStria terminalis030104 developmental biologymedicine.anatomical_structureSchizophreniaBehavioral medicineAnxietySeptal Nucleimedicine.symptomCuesPsychologyNeuroscience030217 neurology & neurosurgeryEndocannabinoidsMolecular psychiatry
researchProduct

Anatomical characterization of the cannabinoid CB1receptor in cell-type-specific mutant mouse rescue models

2016

Type 1 cannabinoid (CB1 ) receptors are widely distributed in the brain. Their physiological roles depend on their distribution pattern, which differs remarkably among cell types. Hence, subcellular compartments with little but functionally relevant CB1 receptors can be overlooked, fostering an incomplete mapping. To overcome this, knockin mice with cell-type-specific rescue of CB1 receptors have emerged as excellent tools for investigating CB1 receptors' cell-type-specific localization and sufficient functional role with no bias. However, to know whether these rescue mice maintain endogenous CB1 receptor expression level, detailed anatomical studies are necessary. The subcellular distribut…

0301 basic medicineCannabinoid receptormusculoskeletal neural and ocular physiologyGeneral Neurosciencemedicine.medical_treatmentImmunoelectron microscopyfood and beveragesBiologyHippocampal formationEndocannabinoid system03 medical and health sciencesGlutamatergic030104 developmental biology0302 clinical medicinenervous systemmedicineGABAergiclipids (amino acids peptides and proteins)CannabinoidReceptorNeurosciencepsychological phenomena and processes030217 neurology & neurosurgeryJournal of Comparative Neurology
researchProduct

Localization of the cannabinoid type-1 receptor in subcellular astrocyte compartments of mutant mouse hippocampus

2018

Astroglial type‐1 cannabinoid (CB1) receptors are involved in synaptic transmission, plasticity and behavior by interfering with the so‐called tripartite synapse formed by pre‐ and post‐synaptic neuronal elements and surrounding astrocyte processes. However, little is known concerning the subcellular distribution of astroglial CB1 receptors. In particular, brain CB1 receptors are mostly localized at cells' plasmalemma, but recent evidence indicates their functional presence in mitochondrial membranes. Whether CB1 receptors are present in astroglial mitochondria has remained unknown. To investigate this issue, we included conditional knock‐out mice lacking astroglial CB1 receptor expression …

0301 basic medicineCannabinoid receptormedicine.medical_treatmentImmunoelectron microscopyNeurotransmissionBiologyHippocampusImmunoenzyme Techniques03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineReceptor Cannabinoid CB1Glial Fibrillary Acidic ProteinTripartite synapsemedicineAnimalsMicroscopy ImmunoelectronReceptorMice KnockoutGlial fibrillary acidic proteinmusculoskeletal neural and ocular physiologyfood and beveragesMitochondriaCell biology030104 developmental biologymedicine.anatomical_structurenervous systemNeurologyAstrocytesbiology.proteinlipids (amino acids peptides and proteins)Cannabinoidpsychological phenomena and processes030217 neurology & neurosurgeryAstrocyte
researchProduct

The endocannabinoid system in anxiety, fear memory and habituation.

2011

Evidence for the involvement of the endocannabinoid system (ECS) in anxiety and fear has been accumulated, providing leads for novel therapeutic approaches. In anxiety, a bidirectional influence of the ECS has been reported, whereby anxiolytic and anxiogenic responses have been obtained after both increases and decreases of the endocannabinoid tone. The recently developed genetic tools have revealed different but complementary roles for the cannabinoid type 1 (CB1) receptor on GABAergic and glutamatergic neuronal populations. This dual functionality, together with the plasticity of CB1 receptor expression, particularly on GABAergic neurons, as induced by stressful and rewarding experiences…

Cannabinoid receptormedicine.drug_classclassical conditioninggamma-aminobutyric acidglutamateAnxietyAnxiolyticstressReceptor Cannabinoid CB1MemoryCannabinoid Receptor ModulatorsmedicineAnimalsHumansneuronal plasticityPharmacology (medical)HabituationendocannabinoidsHabituation PsychophysiologicPharmacologyExtinction (psychology)FearArticleshabituationEndocannabinoid systemPsychiatry and Mental healthAnxiogenicnervous systemcannabinoid CB1 receptorAnxietyMemory consolidationlipids (amino acids peptides and proteins)medicine.symptomPsychologyNeuroscienceJournal of psychopharmacology (Oxford, England)
researchProduct

Differential glutamatergic and GABAergic contributions to the tetrad effects of Δ9-tetrahydrocannabinol revealed by cell-type-specific reconstitution…

2020

Δ9-tetrahydrocannabinol (THC), the major psychoactive ingredient of Cannabis sativa, exerts its actions through the endocannabinoid system by stimulation of the cannabinoid type 1 (CB1) receptor. The widespread distribution of this receptor in different neuronal cell types and the plethora of functions that is modulated by the endocannabinoid system explain the versatility of the effects of THC. However, the cell types involved in the different THC effects are still not fully known. Conditional CB1 receptor knock-out mice were previously used to identify CB1 receptor subpopulations that are "necessary" for the tetrad effects of a high dose of THC: hypothermia, hypolocomotion, catalepsy and …

0301 basic medicinePharmacologyCannabinoid receptormusculoskeletal neural and ocular physiologymedicine.medical_treatmentGlutamate receptorBiologyEndocannabinoid system03 medical and health sciencesCellular and Molecular NeuroscienceGlutamatergic030104 developmental biology0302 clinical medicinenervous systemmental disordersForebrainmedicineGABAergiclipids (amino acids peptides and proteins)CannabinoidReceptorNeurosciencepsychological phenomena and processes030217 neurology & neurosurgeryNeuropharmacology
researchProduct

Discovery and characterization of two novel CB1 receptor splice variants with modified N-termini in mouse

2017

Numerous studies have been carried out in the mouse model, investigating the role of the CB1 cannabinoid receptor. However, mouse CB1 (mCB1) receptor differs from human CB1 (hCB1) receptor in 13 amino acid residues. Two splice variants, hCB1a and hCB1b, diverging in their amino-termini, have been reported to be unique for hCB1 and, via different signaling properties, contribute to CB1 receptor physiology and pathophysiology. We hypothesized that splice variants also exist for the mCB1 receptor and have different signaling properties. On murine hippocampal cDNA, we identified two novel mCB1 receptor splice variants generated by splicing of introns with 117 bp and 186 bp in the N-terminal dom…

0301 basic medicineMorpholinesRNA SplicingBiologyNaphthalenesBiochemistryHippocampusArticle5-HT7 receptor03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineReceptor Cannabinoid CB1Cannabinoid receptor type 2Enzyme-linked receptorAnimalsHumanssplice5-HT5A receptorRNA MessengerReceptorMice KnockoutNeuronsMolecular biologyBenzoxazinesRetinoic acid receptorAlternative Splicing030104 developmental biologyHEK293 CellsInterleukin-21 receptor030217 neurology & neurosurgeryEndocannabinoidsSignal Transduction
researchProduct

Cannabinoid CB1 receptor in dorsal telencephalic glutamatergic neurons: distinctive sufficiency for hippocampus-dependent and amygdala-dependent syna…

2013

A major goal in current neuroscience is to understand the causal links connecting protein functions, neural activity, and behavior. The cannabinoid CB1 receptor is expressed in different neuronal subpopulations, and is engaged in fine-tuning excitatory and inhibitory neurotransmission. Studies using conditional knock-out mice revealed necessary roles of CB1 receptor expressed in dorsal telencephalic glutamatergic neurons in synaptic plasticity and behavior, but whether this expression is also sufficient for brain functions is still to be determined. We applied a genetic strategy to reconstitute full wild-type CB1 receptor functions exclusively in dorsal telencephalic glutamatergic neurons a…

TelencephalonCannabinoid receptorLightBlotting WesternHippocampusGlutamic AcidBiologyNeurotransmissionAnxietyReal-Time Polymerase Chain ReactionAmygdalaHippocampus03 medical and health sciencesGlutamatergicMice0302 clinical medicineReceptor Cannabinoid CB1medicineExcitatory Amino Acid AgonistsAnimalsFear conditioning030304 developmental biologyMice KnockoutNeurons0303 health sciencesKainic AcidNeuronal PlasticityBehavior AnimalGeneral NeuroscienceArticlesAmygdalaEndocannabinoid systemImmunohistochemistryElectrophysiological PhenomenaMice Inbred C57BLmedicine.anatomical_structurenervous systemSynaptic plasticitySynapsesRNAlipids (amino acids peptides and proteins)Neuroscience030217 neurology & neurosurgerypsychological phenomena and processesJournal of Neuroscience
researchProduct

Cell type‐specific genetic reconstitution of CB1 receptor subsets to assess their role in exploratory behaviour, sociability, and memory

2021

Several studies support the notion that exploratory behaviour depends on the functionality of the cannabinoid type 1 (CB1) receptor in a cell type-specific manner. Mice lacking the CB1 receptor in forebrain GABAergic or dorsal telencephalic glutamatergic neurons have served as essential tools revealing the necessary CB1 receptor functions in these two neuronal populations. However, whether these specific CB1 receptor populations are also sufficient within the endocannabinoid system for wild-type-like exploratory behaviour has remained unknown. To evaluate cell-type-specific sufficiency of CB1 receptor signalling exclusively in dorsal telencephalic glutamatergic neurons (Glu-CB1-RS) or in fo…

Cannabinoid receptormedicine.medical_treatmentBiologyMice03 medical and health sciencesGlutamatergic0302 clinical medicineReceptor Cannabinoid CB1medicineAnimalsGABAergic NeuronsReceptorgamma-Aminobutyric Acid030304 developmental biologyMice Knockout0303 health sciencesmusculoskeletal neural and ocular physiologyGeneral NeuroscienceGlutamate receptorfood and beveragesEndocannabinoid systemMice Inbred C57BLnervous systemForebrainExploratory BehaviorGABAergiclipids (amino acids peptides and proteins)CannabinoidNeurosciencepsychological phenomena and processes030217 neurology & neurosurgeryEndocannabinoidsEuropean Journal of Neuroscience
researchProduct