0000000000223853
AUTHOR
Sabine Ruehle
Neuron-type specific cannabinoid-mediated G protein signalling in mouse hippocampus
Type 1 cannabinoid receptor (CB1) is expressed in different neuronal populations in the mammalian brain. In particular, CB1 on GABAergic or glutamatergic neurons exerts different functions and display different pharmacological properties in vivo. This suggests the existence of neuron-type specific signalling pathways activated by different subpopulations of CB1. In this study, we analysed CB1 expression, binding and signalling in the hippocampus of conditional mutant mice, bearing CB1 deletion in GABAergic (GABA-CB1-KO mice) or cortical glutamatergic neurons (Glu-CB1-KO mice). Compared to their wild-type littermates, Glu-CB1-KO displayed a small decrease of CB1 mRNA amount, immunoreactivity…
Peripheral and central CB1 cannabinoid receptors control stress-induced impairment of memory consolidation
Stressful events can generate emotional memories linked to the traumatic incident, but they also can impair the formation of nonemotional memories. Although the impact of stress on emotional memories is well studied, much less is known about the influence of the emotional state on the formation of nonemotional memories. We used the novel object-recognition task as a model of nonemotional memory in mice to investigate the underlying mechanism of the deleterious effect of stress on memory consolidation. Systemic, hippocampal, and peripheral blockade of cannabinoid type-1 (CB1) receptors abolished the stress-induced memory impairment. Genetic deletion and rescue of CB1 receptors in specific ce…
The endocannabinoid system controls food intake via olfactory processes
Comment in Sensory systems: the hungry sense. [Nat Rev Neurosci. 2014] Inhaling: endocannabinoids and food intake. [Nat Neurosci. 2014]; International audience; Hunger arouses sensory perception, eventually leading to an increase in food intake, but the underlying mechanisms remain poorly understood. We found that cannabinoid type-1 (CB1) receptors promote food intake in fasted mice by increasing odor detection. CB1 receptors were abundantly expressed on axon terminals of centrifugal cortical glutamatergic neurons that project to inhibitory granule cells of the main olfactory bulb (MOB). Local pharmacological and genetic manipulations revealed that endocannabinoids and exogenous cannabinoid…
Cannabinoid CB1 receptors in distinct circuits of the extended amygdala determine fear responsiveness to unpredictable threat.
The brain circuits underlying behavioral fear have been extensively studied over the last decades. Although the vast majority of experimental studies assess fear as a transient state of apprehension in response to a discrete threat, such phasic states of fear can shift to a sustained anxious apprehension, particularly in face of diffuse cues with unpredictable environmental contingencies. Unpredictability, in turn, is considered an important variable contributing to anxiety disorders. The networks of the extended amygdala have been suggested keys to the control of phasic and sustained states of fear, although the underlying synaptic pathways and mechanisms remain poorly understood. Here, we…
Anatomical characterization of the cannabinoid CB1receptor in cell-type-specific mutant mouse rescue models
Type 1 cannabinoid (CB1 ) receptors are widely distributed in the brain. Their physiological roles depend on their distribution pattern, which differs remarkably among cell types. Hence, subcellular compartments with little but functionally relevant CB1 receptors can be overlooked, fostering an incomplete mapping. To overcome this, knockin mice with cell-type-specific rescue of CB1 receptors have emerged as excellent tools for investigating CB1 receptors' cell-type-specific localization and sufficient functional role with no bias. However, to know whether these rescue mice maintain endogenous CB1 receptor expression level, detailed anatomical studies are necessary. The subcellular distribut…
Localization of the cannabinoid type-1 receptor in subcellular astrocyte compartments of mutant mouse hippocampus
Astroglial type‐1 cannabinoid (CB1) receptors are involved in synaptic transmission, plasticity and behavior by interfering with the so‐called tripartite synapse formed by pre‐ and post‐synaptic neuronal elements and surrounding astrocyte processes. However, little is known concerning the subcellular distribution of astroglial CB1 receptors. In particular, brain CB1 receptors are mostly localized at cells' plasmalemma, but recent evidence indicates their functional presence in mitochondrial membranes. Whether CB1 receptors are present in astroglial mitochondria has remained unknown. To investigate this issue, we included conditional knock‐out mice lacking astroglial CB1 receptor expression …
The endocannabinoid system in anxiety, fear memory and habituation.
Evidence for the involvement of the endocannabinoid system (ECS) in anxiety and fear has been accumulated, providing leads for novel therapeutic approaches. In anxiety, a bidirectional influence of the ECS has been reported, whereby anxiolytic and anxiogenic responses have been obtained after both increases and decreases of the endocannabinoid tone. The recently developed genetic tools have revealed different but complementary roles for the cannabinoid type 1 (CB1) receptor on GABAergic and glutamatergic neuronal populations. This dual functionality, together with the plasticity of CB1 receptor expression, particularly on GABAergic neurons, as induced by stressful and rewarding experiences…
Differential glutamatergic and GABAergic contributions to the tetrad effects of Δ9-tetrahydrocannabinol revealed by cell-type-specific reconstitution of the CB1 receptor
Δ9-tetrahydrocannabinol (THC), the major psychoactive ingredient of Cannabis sativa, exerts its actions through the endocannabinoid system by stimulation of the cannabinoid type 1 (CB1) receptor. The widespread distribution of this receptor in different neuronal cell types and the plethora of functions that is modulated by the endocannabinoid system explain the versatility of the effects of THC. However, the cell types involved in the different THC effects are still not fully known. Conditional CB1 receptor knock-out mice were previously used to identify CB1 receptor subpopulations that are "necessary" for the tetrad effects of a high dose of THC: hypothermia, hypolocomotion, catalepsy and …
Discovery and characterization of two novel CB1 receptor splice variants with modified N-termini in mouse
Numerous studies have been carried out in the mouse model, investigating the role of the CB1 cannabinoid receptor. However, mouse CB1 (mCB1) receptor differs from human CB1 (hCB1) receptor in 13 amino acid residues. Two splice variants, hCB1a and hCB1b, diverging in their amino-termini, have been reported to be unique for hCB1 and, via different signaling properties, contribute to CB1 receptor physiology and pathophysiology. We hypothesized that splice variants also exist for the mCB1 receptor and have different signaling properties. On murine hippocampal cDNA, we identified two novel mCB1 receptor splice variants generated by splicing of introns with 117 bp and 186 bp in the N-terminal dom…
Cannabinoid CB1 receptor in dorsal telencephalic glutamatergic neurons: distinctive sufficiency for hippocampus-dependent and amygdala-dependent synaptic and behavioral functions.
A major goal in current neuroscience is to understand the causal links connecting protein functions, neural activity, and behavior. The cannabinoid CB1 receptor is expressed in different neuronal subpopulations, and is engaged in fine-tuning excitatory and inhibitory neurotransmission. Studies using conditional knock-out mice revealed necessary roles of CB1 receptor expressed in dorsal telencephalic glutamatergic neurons in synaptic plasticity and behavior, but whether this expression is also sufficient for brain functions is still to be determined. We applied a genetic strategy to reconstitute full wild-type CB1 receptor functions exclusively in dorsal telencephalic glutamatergic neurons a…
Cell type‐specific genetic reconstitution of CB1 receptor subsets to assess their role in exploratory behaviour, sociability, and memory
Several studies support the notion that exploratory behaviour depends on the functionality of the cannabinoid type 1 (CB1) receptor in a cell type-specific manner. Mice lacking the CB1 receptor in forebrain GABAergic or dorsal telencephalic glutamatergic neurons have served as essential tools revealing the necessary CB1 receptor functions in these two neuronal populations. However, whether these specific CB1 receptor populations are also sufficient within the endocannabinoid system for wild-type-like exploratory behaviour has remained unknown. To evaluate cell-type-specific sufficiency of CB1 receptor signalling exclusively in dorsal telencephalic glutamatergic neurons (Glu-CB1-RS) or in fo…