0000000000223860

AUTHOR

Zaklina Burghard

showing 4 related works from this author

Silicateins - A Novel Paradigm in Bioinorganic Chemistry: Enzymatic Synthesis of Inorganic Polymeric Silica

2013

The inorganic matrix of the siliceous skeletal elements of sponges, that is, spicules, is formed of amorphous biosilica. Until a decade ago, it remained unclear how the hard biosilica monoliths of the spicules are formed in sponges that live in a silica-poor (<50 mu m) aquatic environment. The following two discoveries caused a paradigm shift and allowed an elucidation of the processes underlying spicule formation; first the discovery that in the spicules only one major protein, silicatein, exists and second, that this protein displays a bio-catalytical, enzymatic function. These findings caused a paradigm shift, since silicatein is the first enzyme that catalyzes the formation of an inorga…

SpiculeNew horizonsPolymersNanotechnology02 engineering and technologyCatalysisCalcium Carbonate03 medical and health sciencesSponge spiculeAnimals030304 developmental biology0303 health sciencesInorganic polymerChemistrySilicatesOrganic ChemistrySubstrate (chemistry)Bioinorganic chemistryGeneral ChemistryEnzymatic synthesisSilicon Dioxide021001 nanoscience & nanotechnologyCathepsinsPoriferaChemistry BioinorganicChemical engineeringBiocatalysisInorganic matrixSuberites0210 nano-technology
researchProduct

Mesocrystalline calcium silicate hydrate: A bioinspired route toward elastic concrete materials

2017

Controlled aggregation of polymer-stabilized calcium silicate hydrate nanoparticles leads to elastic cementitious materials.

Materials scienceMaterials ScienceNanoparticle02 engineering and technology010402 general chemistry01 natural scienceschemistry.chemical_compoundBrittlenessFracture toughnessFlexural strengthElasticity (economics)Calcium silicate hydrateComposite materialMesocrystalResearch ArticlesComputingMilieux_MISCELLANEOUSMultidisciplinarySciAdv r-articles021001 nanoscience & nanotechnology0104 chemical scienceschemistryPhysical Sciencesddc:540Cementitious[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]0210 nano-technologyResearch Article
researchProduct

Bio-sintering processes in hexactinellid sponges: Fusion of bio-silica in giant basal spicules from Monorhaphis chuni☆

2009

The two sponge classes, Hexactinellida and Demospongiae, comprise a skeleton that is composed of siliceous skeletal elements (spicules). Spicule growth proceeds by appositional layering of lamellae that consist of silica nanoparticles, which are synthesized via the sponge-specific enzyme silicatein. While in demosponges during maturation the lamellae consolidate to a solid rod, the lamellar organization of hexactinellid spicules largely persists. However, the innermost lamellae, near the spicule core, can also fuse to a solid axial cylinder. Similar to the fusion of siliceous nanoparticles and lamella, in several hexactinellid species individual spicules unify during sintering-like processe…

FusionSpiculebiologyHexactinellidMolecular Sequence DataAnimal StructuresAnatomyBlotting NorthernSilicon Dioxidebiology.organism_classificationPoriferaSpongeLamella (surface anatomy)Sponge spiculeStructural BiologySpectrometry Mass Matrix-Assisted Laser Desorption-IonizationComplementary DNAMicroscopy Electron ScanningBiophysicsAnimalsLamellar structureJournal of Structural Biology
researchProduct

ChemInform Abstract: Silicateins - A Novel Paradigm in Bioinorganic Chemistry: Enzymatic Synthesis of Inorganic Polymeric Silica

2013

ChemistryOrganic chemistryBioinorganic chemistryGeneral MedicineEnzymatic synthesisChemInform
researchProduct