6533b7d4fe1ef96bd1261ea9

RESEARCH PRODUCT

Silicateins - A Novel Paradigm in Bioinorganic Chemistry: Enzymatic Synthesis of Inorganic Polymeric Silica

Dario PisignanoXiaohong WangZaklina BurghardWerner E.g. MüllerHeinz C. Schröder

subject

SpiculeNew horizonsPolymersNanotechnology02 engineering and technologyCatalysisCalcium Carbonate03 medical and health sciencesSponge spiculeAnimals030304 developmental biology0303 health sciencesInorganic polymerChemistrySilicatesOrganic ChemistrySubstrate (chemistry)Bioinorganic chemistryGeneral ChemistryEnzymatic synthesisSilicon Dioxide021001 nanoscience & nanotechnologyCathepsinsPoriferaChemistry BioinorganicChemical engineeringBiocatalysisInorganic matrixSuberites0210 nano-technology

description

The inorganic matrix of the siliceous skeletal elements of sponges, that is, spicules, is formed of amorphous biosilica. Until a decade ago, it remained unclear how the hard biosilica monoliths of the spicules are formed in sponges that live in a silica-poor (<50 mu m) aquatic environment. The following two discoveries caused a paradigm shift and allowed an elucidation of the processes underlying spicule formation; first the discovery that in the spicules only one major protein, silicatein, exists and second, that this protein displays a bio-catalytical, enzymatic function. These findings caused a paradigm shift, since silicatein is the first enzyme that catalyzes the formation of an inorganic polymer from an inorganic monomeric substrate. In the present review the successive steps, following the synthesis of the silicatein product, biosilica, and resulting in the formation of the hard monolithic spicules is given. The new insight is assumed to open new horizons in the field of biotechnology and also in biomedicine.

10.1002/chem.201204412https://hdl.handle.net/11587/380772